Skip to main content

Radiometric Measurements Required for Broad-Band Optical Sources

  • Chapter
  • 376 Accesses

Abstract

Although the evaluation of hazards associated with lasers is complex, the evaluation of more conventional, broad-band sources is even more complex, since spectral characteristics and source size must be considered. To evaluate a broad-band optical source, such as an arc lamp, an incandescent lamp, a fluorescent lamp, an array of lamps, or an open-arc process such as those found in industry, it is normally necessary to determine the spectral distribution of optical radiation emitted from the source at the point or points of nearest human access. This accessible emission spectral distribution of interest for a lighting system may differ from that actually being emitted by the lamp alone due to the filtration by any optical elements (e.g., projection optics) in the light path. Secondly, the size, or projected size, of the source must be characterized in the retinal hazard spectral region. Thirdly, it may be necessary to determine the variation of irradiance and radiance with distance. The performance of the necessary measurements is normally not an easy task without sophisticated instruments, as will be shown in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angstrom, A. K., and Drummond, A. J., 1961, Basic concepts concerning cutoff glass filters used in radiation measurements, J. Meteorology 18(3):360–367.

    Article  Google Scholar 

  • Bauer, G., 1965, “Measurement of Optical Radiations,” Focal Press, New York.

    Google Scholar 

  • Berger, D. S., 1976, The sunburning ultraviolet meter: design and performance, Photochem. and Photobiol. 24:587–593.

    Article  CAS  Google Scholar 

  • Berger, D., Magnus, I., Rottier, P. B., Sayre, R. M., and Freeman, R. G., 1969, Design and construction of high intensity monochromators, in “The Biologic Effects of Ultraviolet Radiation,” (F. Urbach, ed.) Pergamon Press, New York.

    Google Scholar 

  • Burt, J. E., and Luther, F. M., 1970, Effect of receiver orientation on erythema dose, Photochem. Photobiol 29:85–91.

    Article  Google Scholar 

  • Churchkova, M. and Kurchatova, C., 1975, Ultraviolet radiation and photooxidants, (Bulgarian), Kygiena i Zdraveopazvania (Sophia) 18(3):281–286.

    Google Scholar 

  • Coakley, J. M., 1976, Activities in the control of noncoherent radiation, in “Symposium on Biological Effects and Measurement of Light Sources,” (D. G. Hazzard, ed.) pp. 91–105, HEW Publication (FDA)77–8002, U. S. Department of Health, Education and Welfare, Rockville, MD (October 1976).

    Google Scholar 

  • Eckerle, K. L., 1976, Modification of an NBS Reference Spectrophotometer, NBS Technical Note 913, U. S. Department of Commerce, National Bureau of Standards, Washington, DC (July 1976).

    Google Scholar 

  • Elenbaas, W., 1972, “Light Sources,” Philips Technical Library Series, New York, Crane, Russak and Co., Inc.

    Google Scholar 

  • Garbuny, M., 1965, “Optical Physics,” Academic Press, New York.

    Google Scholar 

  • Gillham, E. J., 1961, “Radiometric Standards and Measurements,” Notes on Applied Science No. 23, National Physical Laboratory, Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Glaser, P. E. and Walker, R. F., 1964, “Thermal Imaging Techniques,” Plenum Press, New York.

    Google Scholar 

  • Jones, O. C. and Preston, J. S., 1969, “Photometric Standards and the Unit of light,” Notes on Applied Science No. 24, National Physical Laboratory, Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Kasha, M., 1948, Transmission filters for the ultraviolet, J. Opt. Soc. Am. 38(11):929–934.

    Article  CAS  PubMed  Google Scholar 

  • Klein, R. M., 1979, Cut-off filters for the near ultraviolet, Photochem. Photobiol. 29:1053–1054.

    Article  Google Scholar 

  • Koller, L. R., 1965, “Ultraviolet Radiation,” (2nd ed.) John Wiley and Sons, New York.

    Google Scholar 

  • Loewen, E. G., 1970, “Diffraction Grating Handbook,” Bausch and Lomb, Inc., Rochester, New York.

    Google Scholar 

  • Madden, R. P., 1975, Ultraviolet Transfer Standard Detectors and Evaluation and Calibration of NIOSH UV Hazard Monitor, HEW Publication No. (NIOSH)75 131, NIOSH, Cincinnati, OH, (January 1975).

    Google Scholar 

  • Martin, D. H. (ed.), 1967, “Spectroscopic Techniques in Far-Infrared, Submillimeter, and Millimeter Wavelengths,” North Holland Publishing Co., Amsterdam.

    Google Scholar 

  • McSparron, D. A., Mohan, K., Raybold, R. C., Saunders, R. D., nd Zalewski, E. F., 1970, Spectro-radiometry and Conventional Photometry. An Interlaboratory Comparison, NBS Technical Note 559, National Bureau of Standards, Washington, DC (November 1970).

    Google Scholar 

  • Nicodemus, F. E., 1972, “Radiometry-Selected Reprints,” American Institute of Physics, New York.

    Google Scholar 

  • Nicodemus, F. E. (ed.), 1977, 1978, 1979, Self Study Manual on Optical Radiation Measurements, NBS Technical Note Series 910, U.S. Department of Commerce, National Bureau of Standards, Washington, DC.

    Google Scholar 

  • Pasachoff, J. M. and Muzyka, D. F., 1976, Infrared coronal lines, Vistas in Astronomy 19:341–353.

    Article  Google Scholar 

  • Penning, F. M., 1979, “Electrical Discharges in Gases,” Philips Technical Library, The Hague.

    Google Scholar 

  • Pierson, A. H., 1979, Know your monochromator, Electro-Optical Sys. Design 11(2):31–37.

    Google Scholar 

  • Piltingsrud, H. V., and Stencil, J. A., 1976, A portable spectroradiometer for use at visible and ultraviolet wavelengths, Amer. Industr. Hyg. Assn. J. 37:(2)90–94.

    Article  CAS  Google Scholar 

  • Rentschler, H. C., Henry, D. E., and Smith, K. O., 1932, Photoelectric emission from different metals, Rev. Sci. Instr. 3:794–798.

    Article  Google Scholar 

  • Rentschler, H. C., 1930, An ultraviolet meter, Trans. Amer. Inst. Electr. Engr. 49:576–580.

    Article  Google Scholar 

  • Roach, T., 1973, Final Report on a Method for Field Evaluation of UV Radiation Hazards, prepared by CBS Laboratories for the National Institute for Occupational Safety and Health (NIOSH), Contract No. HSM-99–72–144, NIOSH, Cincinnati, OH.

    Google Scholar 

  • Saunders, R. D. and Shumaker, J. B., 1977, Optical Radiation Measurements: The NBS Scale of Spectral Irradiance, NBS Technical Note 594–13, U.S. Department of Commerce, National Bureau of Standards, Washington, DC (April 1977).

    Google Scholar 

  • Saunders, R. D., Ott, W. R., Bridger, J. M., 1978, Spectral irradiance standard for the ultraviolet: The Deuterium Lamp, Appl. Opt. 17:593.

    Article  CAS  PubMed  Google Scholar 

  • Sliney, D. H., 1972, The merits of an envelope action spectrum for ultraviolet radiation, Amer. Industr. Hyg. Assn. J. 33:644–653.

    Article  CAS  Google Scholar 

  • Sliney, D. H., Bason, F. C., and Freasier, B. C., 1971, Instrumentation and measurement of ultraviolet, visible and infrared radiation, Am. Ind. Hyg. Assn. J. 32:415–431.

    Article  CAS  Google Scholar 

  • Sliney, D. H., Marshall, W. J., Carothers, M. L. and Kaste, R. C., 1977, “Hazard Analysis of Broad-Band Optical Sources,” Technical Guide 085, U.S. Army Environmental Hygiene Agency, Aberdeen Proving Ground, MD (available from NTIS as ADA054 802) (December 1977).

    Google Scholar 

  • Smith, R. A., 1965, Detectors for ultraviolet visible, and infrared radiation, Appl. Opt. 4(6):633–638.

    Article  Google Scholar 

  • Spears, G. R., 1974, Radiant flux measurements of ultraviolet emitting light sources, J. Illum. Engr. Soc.

    Google Scholar 

  • SPIE, 1979, “Light Measurement in Industry,” a meeting held September 12–13, 1978, London, SPIE Proceedings Series, Vol. 146.

    Google Scholar 

  • Stair, R. 1969, Measurements of natural ultraviolet radiation-historical and general introduction, in “The Biologic Effect of Ultraviolet Radiation,” (F. Urbach, ed.) pp. 377–390, Pergamon Press, New York.

    Google Scholar 

  • Stair, R., Schneider, W. E., and Jackson, J. K., 1963, A new standard of spectral irradiance, Appl. Opt. 2:1151.

    Article  Google Scholar 

  • Vechet, B., 1974, Some problems in the absolute measurements of germicidal ultraviolet radiation: the use of “Pen Ray” lamps as a calibration standard, Photochem. Photobiol. 19:329–335.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, J. W. T., 1958, “Photometry,” 3rd ed., Dover, New York.

    Google Scholar 

  • Williams, C. S. and Becklund, O. A., 1972, “Optics: A Short Course for Engineers,” Wiley Interscience, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sliney, D., Wolbarsht, M. (1980). Radiometric Measurements Required for Broad-Band Optical Sources. In: Safety with Lasers and Other Optical Sources. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3596-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3596-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3598-4

  • Online ISBN: 978-1-4899-3596-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics