Skip to main content

Laser Output Measurements: Radiometry and Calorimetry

  • Chapter
Safety with Lasers and Other Optical Sources
  • 376 Accesses

Abstract

There are many types of measurements which can be made to characterize a laser’s output. The types of measurements considered in this chapter fall under the broad term of “radiometric;” that is, measurements of a radiometric quantity such as radiant power or radiant energy, irradiance or radiant exposure. The two quantities radiant power and radiant energy are by far the most important and probably more fundamental for laser measurement. The reader should note that the term “radiometric” when applied to a method of measuring power or energy has often been used in a limited sense—referring to the use of instruments calibrated against a radiometric scale derived from a standard blackbody. The contrasting method of measurement under this narrow meaning would be calorimetric measurement where the temperature elevation in an absorber is in itself the final calibration reference. In this chapter the term radiometry is meant to apply to all techniques of measuring optical radiometric quantities such as radiant power or energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreou, D., and Little, V. I., 1973, On the monitoring of laser radiation at 1.06 μm, J. Phys. E. 6: 1080–1081.

    Article  CAS  Google Scholar 

  • Baker, H. J., and King, T. A., 1976, An appraisal [of] streak camera operation at the 1.315 μm iodine laser wavelength, Optics. Commun. 18:286–288.

    Article  CAS  Google Scholar 

  • Bartoli, F., Esterowitz, L., Allen, R., and Kruer, M., 1976, A generalized thermal model for laser damage in infrared detectors, J. Appl. Phys. 47(7):2875–2881.

    Article  CAS  Google Scholar 

  • Bauer, G., 1965, “Measurements of Optical Radiation,” Focal Press, New York.

    Google Scholar 

  • Beck, G., 1976, Operation of a 1P28 photomultiplier with subnanosecond response time, Rev. Sci. Instrum. 47:537–541.

    Article  CAS  Google Scholar 

  • Beck, G., 1976, Photodiode and holder with 60 psec response time, Rev. Sci. Instrum. 47:849–853.

    Article  CAS  Google Scholar 

  • Birnbaum, G., and Birnbaum, M., 1967, Measurement of laser energy and power, Proc. IEEE 55(6):1026–1031.

    Article  Google Scholar 

  • Blackmon, W., 1973, Laser power and energy measurements, in “Electro-Optical Systems Design Conference-1973,” available from Industrial and Scientific Conference Management, Inc., Chicago, IL 60606.

    Google Scholar 

  • Blevin, W. R., and Geist, J., 1974, Influence on black coatings on pyroelectric detectors, Appl. Opt. 13(5):1171–1178.

    Article  CAS  PubMed  Google Scholar 

  • Block, W. H., and Gaddy, O. L., 1973, Thin film room-temperature IR bolometers with nanosecond response time, IEEE J. Quantum Elect. QE-9:104–105.

    Google Scholar 

  • Boivin, L. P., 1978, Reduction of diffraction errors in radiometry by means of toothed apertures, Appl. Opt. 17:3323–3328.

    Article  CAS  PubMed  Google Scholar 

  • Boivin, L. P., and Smith, T. C., 1978, Electrically calibrated radiometer using a thin film thermopile, Appl. Opt. 17:3067–3075.

    Article  CAS  PubMed  Google Scholar 

  • Boyne, H. S., 1976, NBS Standards and Measurement Services, in “National Conference on Measurements of Laser Emissions for Regulatory Purposes,” (James, R. H., ed.) HEW Publication (FDA) 76–8037, U.S. Department of Health, Education, and Welfare, Food and Drug Administration, Bureau of Radiological Health, Rockville, MD, April 1976.

    Google Scholar 

  • Bradley, D. J., and New, G. H. C., 1974, Ultrashort pulse measurements, Proc. IEEE, 62:313–345.

    Article  Google Scholar 

  • Bridges, T. J., Chang, T. Y., and Cheo, P. K., 1968, Pulse response of electro-optic modulators and photoconductive detectors at 10.6 μ, Appl. Phys. Letters 12:297–300.

    Article  Google Scholar 

  • Bristow, M. P. F., 1979, Fluorescence of short wavelength cutoff filters, Appl. Opt 18(7):952–955.

    Article  CAS  PubMed  Google Scholar 

  • Cumin, B., Miehe, J. A., Sipp, B., and Thebault, J., 1976, Picosecond trigger system useful in mode-locked laser pulse measurements. Rev. Sci. Instrum. 47:1435–1440.

    Article  Google Scholar 

  • Doyle, W. M., and Mcintosh, B. C., 1976, Detectors for wavelength independent radiometry, “Procedings 1976 Technical Conference of the Electro-Optical Systems Design Conference,” pp 270–276, Kiver Publications, Chicago.

    Google Scholar 

  • Doyle, W. M., Mcintosh, B. C., and Geist, J., 1976, Implementation of a system of optical calibration based on pyroelectric radiometry, Opt. Eng. 15(6):541–548.

    Article  Google Scholar 

  • Drummond, A. J. (ed.), 1970, “Precision Radiometry,” Vol. 14 of Advances in Geophysics, Academic Press, New York.

    Google Scholar 

  • Duguay, M. A., and Mattick, A. T., 1971, Ultrahigh speed photography of picosecond light pulses and echoes, Appl. Opt. 10:2162–2170.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, J. G., 1975, A standard calorimeter for pulsed lasers, J. Phys. E. 8:663–665.

    Article  Google Scholar 

  • Engstrom, R. W. (ed.), 1974, “RCA Electro-Optics Handbook,” RCA Corp., Harrison, N. J.

    Google Scholar 

  • Emmons, R. B., Hawkins, S. R., and Cuff, K. F., 1975, Infrared detectors: an overview, Opt. Eng. 14(1):21–30.

    Article  CAS  Google Scholar 

  • Falconer, I. S., Niland, R. A., and Turk, M. I., 1975, A note on the design of laser beam monitors, J. Phys. E. 8:216–218.

    Article  Google Scholar 

  • Fligsten, K. G., and Wolbarsht, M. L., 1966, A diffusely transmitting integrating sphere for measuring laser output with a phototransistor, Proc. IEEE 54:1109.

    Article  Google Scholar 

  • Franzen, D. L., and Schmitt, L. B., 1976, Absolute reference calorimeter for measuring high power laser pulses, Appl. Opt. 15:3115–3122.

    Article  CAS  PubMed  Google Scholar 

  • Geist, J., 1979, Quantum efficiency of the p-n junction in silicon as an absolute radiometric standard, Appl. Opt. 18(6):760–762.

    Article  CAS  PubMed  Google Scholar 

  • Geist, J., 1972, Fundamental principles of absolute radiometry and the philosophy of this NBS program (1968–1971), NBS Tech. Note 594–1, Washington, National Bureau of Standards (June 1972).

    Google Scholar 

  • Geist, J., Dewey, H. J., and Lind, M. A., 1976, Low-level periodic pulsed energy measurements with an electrically calibrated pyroelectric detector, Appl. Phys. Letters 28:171–173.

    Article  CAS  Google Scholar 

  • Geist, J., Schmidt, L. B., and Case, W. E., 1973, Comparison of the laser power and total irradiance scales maintained by the National Bureau of Standards, Appl. Opt. 12(11):2773–2775.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, A. F., Kimmitt, M. F., Maggs, P. N. D., and Norris, B., 1975, A wide bandwidth detection and display system for use with TEA CO2 lasers, J. Appl. Phys. 46:1413–1414.

    Article  Google Scholar 

  • Green, S. I., 1976, 50 picosecond detector laser pulse monitor, Rev. Sci. Instrum. 47:1083–1085.

    Article  Google Scholar 

  • Greiner, N. R., Arnold, G. P., and Wenzel, R. G., 1973, Rapid recording of infrared spectra from pulsed chemical lasers, J. Appl. Phys. 44:3203–3204.

    Google Scholar 

  • Gunn, S. R., 1973, Calorimetric measurements of laser energy and power, J. Phys. E. 6:105–115.

    Article  CAS  Google Scholar 

  • Gunn, S. R., 1974, Volume-absorbing calorimeters for high-power laser pulses, Rev. Sci. Instrum. 45:936–943.

    Article  Google Scholar 

  • Hadland, R., 1976, Recent advances in high speed photography, in “Survey of British Electro-Optics,” Taylor and Francis, Ltd., London.

    Google Scholar 

  • Heard, H. G., 1968, “Laser parameter measurement handbook,” J. Wiley & Sons, Inc., New York.

    Google Scholar 

  • Heffner, D. K., 1971, Calibration of lasers—necessity and techniques, in “Laser Applications in Medicine and Biology,” (M. L. Wolbarsht, ed.) pp 19–34, Plenum Press, New York.

    Google Scholar 

  • Hudson, R. D., Jr., 1969, “Infrared System Engineering,” Wiley-Interscience, New York.

    Google Scholar 

  • Hudson, R. D., and Hudson, J. W., 1978, “Infrared Detectors,” Academic Press, New York.

    Google Scholar 

  • Jacob, J. H., Rugh, E. R., Daugherty, J. D., and Northam, N. B., 1973, An absolute method of measuring energy outputs from lasers, Rev. Sci. Instrum. 44:471–479.

    Article  CAS  Google Scholar 

  • James, R. H. (ed.), 1976, Nation Conference on Measurements of Laser Emissions for Regulatory Purposes, HEW Publication (FDA) 76–8037, U.S. Department of Health, Education, and Welfare, Food and Drug Administration, Bureau of Radiological Health, Rockville, MD (April 1976).

    Google Scholar 

  • James, R. H., Ellingson, O. L., Peterson, R. W., 1974, Calibration systems for laser power or energy measuring apparatus, Am. Ind. Hyg. J. 35(6):327–332.

    Article  CAS  Google Scholar 

  • Johnson, J. C., and Massey, G. A., 1978, Bolometric laser power meter for sensitive measurements in the ir-vacuum UV spectral range, Appl. Opt. 17:2268–2269.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, A. S., 1973, Heterojunction PbSnTe detectors solve IR system problems, EOSD 5:24–29 (October 1973).

    Google Scholar 

  • Kamibayashi, T., Yonemochi, S., and Miyakawa, T., 1973, Superlinear dependence of photon drag voltage on incident power density, Appl. Phys. Letters 22:119–120.

    Article  CAS  Google Scholar 

  • Kimmitt, M. F., Tyte, D. C., and Wright, M. J., 1972, Photon drag radiation monitors for use with pulsed CO2 lasers, J. Phys. E. 5:239–240.

    Article  CAS  Google Scholar 

  • Kressel, H., and Butler, J. K., 1977, “Semiconductor Lasers and Heterojunction LEDs,” Academic Press, New York.

    Google Scholar 

  • Kruer, M. R., Esterowitz, L., Bartoli, F. J., and Allen, R. E., 1975, Optical radiation damage of SBN materials and pyroelectric detectors at 10.6 μm, J. Appl. Phys. 46:1072–1079.

    Article  CAS  Google Scholar 

  • Labo, J. A., Marston, D. R., and Laudieri, P. C., 1974, Laser Energy Evaluator (LEE): Laboratory and Field Use, USAF School of Aerospace Med., Report SAM-TR-74–50 (December 1974) (DDC AD A-005–294).

    Google Scholar 

  • Landry, R. J., and Peterson, R. W., 1977, Temperature dependent response of optical radiation measurement instrumentation, Appl. Opt. 16(11):2968–2971.

    Article  CAS  PubMed  Google Scholar 

  • Lawton, R. A., and Andrews, J. R., 1976, Electrical strobing of a photoconductor cuts sampling oscilloscope’s rise time, Laser Focus 12:62–65 (Nov. 1976).

    Google Scholar 

  • Lind, M. A., and Zalewski, E. F., 1976, Silicon photodetector instabilities in the UV, Appl. Opt. 15(6): 1377–1378.

    Article  CAS  PubMed  Google Scholar 

  • Manes, K. R., Smith, D. L., Haas, R. A., and Glaros, S. S., 1975, Prepulse extinction-ratio measurements on a CO2 laser system, IEEE J. Quantum Elect. QE-11:635–636.

    Article  Google Scholar 

  • McCall, G. H., 1972, High speed inexpensive photodiode assembly, Rev. Sci. Instr. 43 (6):865.

    Article  Google Scholar 

  • Melchior, H., Fisher, M. B., and Arams, F. R., 1970, Photodetectors for optical communications systems, Proc. IEEE 58:1466–1486.

    Article  Google Scholar 

  • Nakatsuka, M., and Kubo, U., 1976, Optical damage threshold of large aperture high power CO2 laser calorimeter, Japan, J. Appl. Phys. 15:1585–1586.

    CAS  Google Scholar 

  • Nichols, D. B., Wrolstad, K. H., and McClure, J. D., 1974, Time-resolved spectroscopy of a pulsed H2-F2 laser with well-defined initial conditions, J. Appl. Phys. 45:5360–5366.

    Article  CAS  Google Scholar 

  • Nicodemus, F. E. (ed.), 1976–1978, “Self-study Manual on Optical Radiation Measurements,” NBS Technical Notes 910 series, National Bureau of Standards, Optical Physics Division, Washington, U.S. Government Printing Office.

    Google Scholar 

  • Offerberger, A. A., Smy, P. R., and Burnett, N. H., 1975, High power CO2 laser energy detector Rev. Sci. Instr. 46:317.

    Article  Google Scholar 

  • Ostertag, E., 1977, Full synchronization of an optical multichannel analyzer for picosecond spectroscopy, Rev. Sci. Instr. 48:18–23.

    Article  CAS  Google Scholar 

  • Penzkofer, A., von der Linde, D., and Laubereau, A., 1972, The intensity of short light pulses determined with saturable absorbers, Optics Commun. 4:377–379.

    Article  Google Scholar 

  • Penzkofer, A., and Falkenstein, W., 1976, Direct determination of the intensity of picosecond light pulses by two-photon absorption, Optics Commun. 17:1–5.

    Article  CAS  Google Scholar 

  • Peterson, R. W., Coakley, J. M., Mohan, K., and James, R., 1976, The measurement of optical radiations, selected practical considerations, in “NBS SP456, Seminar Proceedings,” pp 215–221.

    Google Scholar 

  • Pierce, R. L., 1975, Fast detectors can measure highpower pulses after attenuation with an integrating sphere, Laser Focus 11(11):62–63 (Nov. 1975).

    Google Scholar 

  • Pond, C. R., Hall, R. B., and Nichols, D. B., 1977, HF laser spectral analysis using near-field holography, Appl. Opt. 16:67–69.

    Article  CAS  PubMed  Google Scholar 

  • Rice, R. O., and Macomber, J. D., 1975, Attenuation of giant laser pulses by absorbing filters, Appl. Opt. 14:2203–2206.

    Article  CAS  PubMed  Google Scholar 

  • Rockwell, R. J., Jr., 1970, Developments in laser instrumentation and calibration, Arch. Environ. Health 20:149–155.

    Article  CAS  PubMed  Google Scholar 

  • Roundy, C. B., Byer, R. L., Phillion, D. W., and Kuizenga, D. J., 1974, A 170 psec pyroelectric detector, Optics Commun. 10:375–377.

    Google Scholar 

  • Schaefer, A. R., 1977, Ultraviolet enhanced responsivity of silicon photodiodes: an investigation, Appl. Opt. 16(6): 1539–1549.

    Article  CAS  PubMed  Google Scholar 

  • Schierer, P., 1975, Measuring dye laser pulses with real-time spectrometer, Laser Focus 11:60–62.

    Google Scholar 

  • Sliney, D. H., 1976, Instrumentation and measurement of laser radiation, in “Laser Hazards and Safety in the Military Environment,” LS79, AGARD, Paris.

    Google Scholar 

  • Sliney, D. H., Bason, F. C., and Freasier, B. C., 1971, Instrumentation and measurement of ultraviolet, visible, and infrared radiation, Am. Ind. Hyg. Assn. J. 32:415–431.

    Article  CAS  Google Scholar 

  • Smathers, S. E., and Maksymonko, G., 1972, Calorimetric measurement of optical power from pulsed lasers, IEEE Transactions on Instrumentation and Measurement IM-21(4):430–433.

    Article  Google Scholar 

  • Smith, R. L., and Phelan, R. J., 1973, Limitations of the use of vacuum photodiodes in instruments for the measurement of laser power and energy, Appl. Opt. 12(4):795–798.

    Article  CAS  PubMed  Google Scholar 

  • Smith, R. L., 1976, Laser power and energy, in, Laser power and energy, in “Symposium on Biological Effects and Measurement of Light Sources,” (D. G. Hazzard, ed.), pp 81–86, HEW Publication (FDA) 77–8002, BRH, Rockville, Maryland (October 1976).

    Google Scholar 

  • Spears, D. L., 1977, Planar HgCdTe quadrantal heterodyne arrays with GHz response at 10.6 μm, Infrared Phys. 17:5–9.

    Article  CAS  Google Scholar 

  • Stimson, A., 1974, “Photometry and Radiometry for Engineers,” John Wiley & Sons, New York.

    Google Scholar 

  • Thacher, P. D., 1976, Calorimeters for pulsed lasers: Calibration, Appl. Opt. 15:1815–1822.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, S. W., Carman, R. L., Spracklen, H. R., Tripp, G. R., and Coleman, L. W., 1974, Ten-picosecond streak camera for the laser fusion program at LLL, in “Electro-Optical Systems Design Conference-1973,” pp 301–309 (available from Industrial and Scientific Conference Management, Inc., Chicago, IL 60606).

    Google Scholar 

  • Title, A. M., Pope, T. P., and Andelin, J. P., Jr., 1974, Drift in interference filters, Appl. Opt. 13(11):2675–2683.

    Article  CAS  PubMed  Google Scholar 

  • Tkachuk, R., and Kuzina, F. D., 1978, Sulfur as a proposed near infrared reflectance standard, Appl. Opt. 17:2817–2820.

    Article  CAS  PubMed  Google Scholar 

  • Treacy, E. B., 1971, Measurement and interpretation of dynamic spectrograms for picosecond light pulses, J. Appl. Phys. 42:3848–3858.

    Article  CAS  Google Scholar 

  • Walker, A. C., and Alcock, A. J., 1976, Picosecond resolution, real-time, linear detection system for 10 μm radiation, Rev. Sci. Instrum. 47:915–920.

    Article  CAS  Google Scholar 

  • Walsh, J. W. T., 1965, “Photometry,” Dover Press, New York.

    Google Scholar 

  • Watt, B. E., 1973, Calorimeter for picosecond laser pulses, Appl. Opt. 12(10):2373–2377.

    Article  CAS  PubMed  Google Scholar 

  • West, E. D., and Schmidt, L. B., 1975, Spectral absorptance measurements for laser calorimetry, J. Opt. Soc. Am. 65(5):573–578.

    Article  Google Scholar 

  • Young, M., and Lawton, R. A., 1978, Saturation of silicon photodiodes at high modulation frequency, Appl. Opt 17(4): 1103–1106.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerer, R. W., 1976, Theory and practice of thermoelectric laser power and energy measurements, Scientech, Inc., Boulder, CO (May 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sliney, D., Wolbarsht, M. (1980). Laser Output Measurements: Radiometry and Calorimetry. In: Safety with Lasers and Other Optical Sources. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3596-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3596-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3598-4

  • Online ISBN: 978-1-4899-3596-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics