Skip to main content

Pyrolysis GC/MS Profiling of Chemical Markers for Microorganisms

  • Chapter
Analytical Microbiology Methods

Abstract

Analytical pyrolysis is an attractive tool for the rapid lassification, identification, or structural characterization of icroorganisms. Pyrolysis-based analytical methods thermally fragment amples in the absence of oxygen to produce volatile components (pyrolyzates) hat can then be separated on-line by capillary GC with flame ionization etection (Py-GC-FID), separated by GC and detected by MS (Py-GC/MS), or etected directly by MS (Py-MS). The success of analytical pyrolysis for icrobial characterization is ultimately based on detecting chemical markers - compounds that are unique or prominent in a group of organisms and that an be used to identify those organisms (see Chapter 1). The mere presence f a particular substance In the pyrolysis product mixture from a icroorganism does not qualify it as a chemical marker; discriminating nformation that is relevant to taxonomic differences must be provided. This hapter describes an approach for the validation of pyrolysis products as hemical markers and their chemical identification. Instrumental aspects and ackground of analytical pyrolysis have been discussed in Chapter 2 as well s by other sources.1,2 Several reviews on analytical pyrolysis in microbial nalysis have also been published.3–5 The use of short capillary columns ombined with ion trap mass spectrometry for the rapid characterization of icrobes is described in Chapter 12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. J. Irwin, “Analytical Pyrolysis”, Marcel Dekker, Inc., New York (1982).

    Google Scholar 

  2. H. L. C. Meuzelaar, J. Haverkamp, and F. D. Hileman, “Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials”, Elsevier, Amsterdam (1982).

    Google Scholar 

  3. C. S. Gutteridge and J. R. Norris, The application of pyrolysis techniques to the identification of microorganisms, J. Appl. Bacteriol. 47: 5 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. W. J. Irwin and J. A. Slack, Analytical pyrolysis in biomedical studies, Analyst 103: 673 (1978).

    Article  CAS  Google Scholar 

  5. F. L. Bayer, and S. L. Morgan, The analysis of biopolymers by analytical pyrolysis gas chromatography, in: “Pyrolysis and GC in polymer analysis”, E. Levy and S. A. Liebman, eds., Marcel Dekker, New York (1985).

    Google Scholar 

  6. Huis In’t Veld, H. L. C. Meuzelaar, A. Tom, Analysis of streptococcal cell wall fractions by Curie-point pyrolysis gas-liquid chromatography, Appl. Microbiol. 26: 92 (1973).

    PubMed  Google Scholar 

  7. G. Dahlen and I. Ericsson, Differentiation between Gram-negatiave anaerobic bacteria by pyrolysis gas chromatography of lipopolysaccharides, J. Gen. Microbiol. 129: 557 (1983).

    PubMed  CAS  Google Scholar 

  8. J. R. Hudson, S. L. Morgan, and A. Fox, Quantitative pyrolysis gas chromatography-mass spectrometry of bacterial cell walls, Anal. Biochem. 120: 59 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. L. W. Eudy, M. D. Walla, J. R. Hudson, S. L. Morgan, and A. Fox, Gas chromatography-mass spectrometry studies on the occurence of acetamide, propionamide, and furfuryl alcohol in pyrolyzates of bacteria, bacterial fractions, and model compounds, J. Anal. Appl. Pyrol. 7: 231 (1985).

    Article  CAS  Google Scholar 

  10. G. Montaudo, Current problems in pyrolysis, J. Anal. Appl. Pyrol. 13: 1 (1988).

    Article  Google Scholar 

  11. G. Holzer, T. F. Bourne, and W. Bertsch, Analysis of in situ methylated fatty acid constituents by curie-point pyrolysis gas chromatography-mass spectrometry, J. Chromatogr. 468: 181 (1989).

    Article  Google Scholar 

  12. P. G. Simmonds, Whole microorganisms studied by pyrolysis-gas chromatography-mass spectrometry: Significance for extraterrestrial life detection experiments, Appl. Microbiol. 20: 567 (1970).

    PubMed  CAS  Google Scholar 

  13. L. W. Eudy, M. D. Walla, S. L. Morgan, and A. Fox, Gas chromatographic-mass spectrometric determination fo muramic acid content and pyrolysis profiles for a group of Gram-positive and Gram-negative bacteria, Analyst 110: 381 (1985).

    Article  PubMed  CAS  Google Scholar 

  14. C. S. Smith, S. L. Morgan, C. D. Parks, A. Fox, and D. G. Pritchard, Chemical marker for the differentiation of group A and group B streptococci by pyrolysis gas chromatography-mass spectrometry, Anal. Chem. 59: 1410 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. K. Ueda, S. L. Morgan, and A. Fox, The origin of dianhydroglucitol, a carbohydrate chemical marker generated by pyrolysis from group B streptococci, Anal. Chem., submitted (1989).

    Google Scholar 

  16. R. E. Aries, C. S. Gutteridge, and T. W. Ottley, Evaluation of a low-cost, automated pyrolysis-mass spectrometer, J. Anal. Appl. Pyrolysis. 9: 81 (1986).

    Article  CAS  Google Scholar 

  17. A. M. Harper, H. L. C. Meuzelaar, G. S. Metcalf, and D. L. Pope, Numerical techniques for processing pyrolysis mass spectra data, in: Analytical Pyrolysis, techniques and applications”, K. J. Voorhees, ed., Butterworths, London (1984).

    Google Scholar 

  18. W. Windig and H. L. C. Meuzelaar, Numerical extraction of components from mixture spectra by multivariate analysis, in: “Computer-enhanced analytical spectroscopy”, H. L. C. Meuzelaar and T. L. Isenhour, eds., Plenum, New York (1987).

    Google Scholar 

  19. H. J. H. MacFie and C. S. Gutteridge, Comparative studies on some methods for handliong quantitative data generated by analytical pyrolysis, J. Anal. Appl. Pyrolysis 4: 175 (1982).

    Article  Google Scholar 

  20. K. J. Voorhees, S. L. Durfee, and D. M. Updegraff, Identification of diverse bacteria grown diverse conditions using pyrolysis-mass spectrometry, J. Microbiol. Methods 8: 315 (1988).

    Article  Google Scholar 

  21. C. S. Smith, S. L. Morgan, and A. Fox, Discrimination and clustering of streptococci by pyrolysis gas chromatography-mass spectrometry, J. Anal. Appl. Pyrolysis, in press (1990).

    Google Scholar 

  22. E. Reiner and W. H. Ewing, Chemotaxonomic studies of some Gram negative bacteria by means of pyrolysis-gas-liquid chromatography, Nature 217: 191 (1968).

    Article  Google Scholar 

  23. C. S. Gutteridge and J. R. Norris, Effect of different growth conditions on the discrimination of three bacteria by pyrolysis gas-liquid chromatography, Appl. Environ. Microbiol. 40: 462 (1980).

    PubMed  CAS  Google Scholar 

  24. H. Engman, H. T. Mayfield, T. Mar, and W. Bertsch, Classification of bacteria by pyrolysis-capillary column gas chromatography-mass spectrometry and pattern recognition, J. Anal. Appl. Pyrolysis 6: 137 (1984).

    Article  CAS  Google Scholar 

  25. J. Gilbart, A. Fox and S. L. Morgan, Carbohydrate profiling of bacteria by gas chromatography-mass spectrometry: chemical derivatization and analytical pyrolysis, Eur. J. Clin. Micro. 6: 715 (1987).

    Article  CAS  Google Scholar 

  26. G. Wells, K. J. Voorhees, and J. H. Futrell, Heating profile curves for resistively heated filament pyrolyzers, Anal. Chem. 52: 1782 (1980).

    Article  CAS  Google Scholar 

  27. R. L. Levy, Trends and advances in design of pyrolysis units for gas chromatography, J. Gas Chromatogr. 5: 107 (1967).

    CAS  Google Scholar 

  28. W. Windig, P. G. Kistemaker, J. Haverkamp, and H. L. C. Meuzelaar, The effects of sample preparation, pyrolysis and pyrolyzate transfer conditions on pyrolysis mass spectra, J. Anal. Appl. Pyrolysis 1: 39 (1979).

    Article  CAS  Google Scholar 

  29. W. Windig, P. G. Kistemaker, J. Haverkamp, and H. L. C. Meuzelaar, Factor analysis of the influence of changes in experimental conditions in pyrolysis mass spectrometry, J. Anal. Appl. Pyrolysis 2: 7 (1980).

    Article  CAS  Google Scholar 

  30. A. van der Kaaden, R. Hoogerbrugge, and P. G. Kistemaker, Effect of sample layer thickness and temperature rise time on the pyrolysis temperature of cellulose, J. Anal. Appl. Pyrolysis 9: 267 (1986).

    Article  Google Scholar 

  31. J. A. Adkins, T. H. Risby, J. J. Scocca, R. E. Yasbin, and J. W. Ezzell, Linear-programmed thermal degradation methane chemical-ionization mass spectrometry. I. Peptidoglycan, cell walls, and related compounds from Bacillus, J. Anal. Appl. Pyrol. 7: 15 (1984).

    Article  CAS  Google Scholar 

  32. W. Windig, E. Jakab, J. M. Richards, and H. L. C. Meuzelaar, Self-modelling curve resolution by factor analysis of a continuous series of pyrolysis mass spectra, Anal. Chem. 59: 317 (1987).

    Article  CAS  Google Scholar 

  33. W. Windig, S. A. Liebman, M. B. Wasserman, and A. P. Snyder, Fast self-modelling curve resolution for time resolved mass spectral data, Anal. Chem. 60: 1503 (1988).

    Article  CAS  Google Scholar 

  34. G. L. French, I. Phillips, S. Chin, Reproducible pyrolysis-gas chromatography of micro-organisms with solid stationary phases and isothermal oven conditions, J. Gen. Microbiol. 125: 347 (1981).

    PubMed  CAS  Google Scholar 

  35. G. L. French, H. Talsania, and I. Philips, Identification of viridans stretococci by pyrolysis-gas chromatography, Med. Microbiol. 29: 19 (1989).

    Article  CAS  Google Scholar 

  36. K. H. Schleifer and O. Kandier, Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407 (1972).

    PubMed  CAS  Google Scholar 

  37. E. E. Medley, P. G. Simmonds, and S. L. Manatt, Pyrolysis-gas chromatography mass-spectrometry study of Actlnomycete streptomyces-longtsporoflavis, Biomed. Mass Spectrom. 2: 261 (1975).

    Article  CAS  Google Scholar 

  38. J. Haverkamp, G. Wieten, A. J. H. Boerboom, J. W. Dallinga, and N. M. M. Nibbering, Pyrolysis-collisionally activated dissociation mass spectrometry of organic model compounds and bacterial samples, in: “Analytical Pyrolysis— Techniques and Applications”, K. J. Voorhees, ed., Butterworths, London, p. 305 (1984).

    Google Scholar 

  39. K. Kato, Pyrolysis of cellulose. Part III. Comparative studies of the volatile compounds from pyrolysates of cellulose and its related compounds, Agr. Biol. Chem., 31: 657 (1967).

    Article  CAS  Google Scholar 

  40. M. A. Posthumus, N. M. M. Nibbering, A. J. Boerboom, and H.-R. Schulten, Pyrolysis mass-apectrometric studies on nucleic-acids, Biomed. Mass Spectrom. 1: 352 (1974).

    Article  PubMed  CAS  Google Scholar 

  41. A. H. Rose, “Chemical Microbiology”, Plenum, New York (1976).

    Google Scholar 

  42. C. Fenselau and R. Cotter, Chemical aspects of fast atom bombardment, Chem. Rev. 87: 501 (1987).

    Article  CAS  Google Scholar 

  43. Huis In’t Veld, H. L. C. Meuzelaar, A. Tom, Analysis of streptococcal cell wall fractions by Curie-point pyrolysis gas-liquid chromatography, Appl. Microbiol. 26: 92 (1973).

    PubMed  Google Scholar 

  44. Stack, M. V.; Donoghue, H. D.; Tyler, J. E., Discrimination between oral streptococci by pyrolysis gas-liquid chromatography, Appl. Environ. Microbiol. 35: 45 (1980).

    Google Scholar 

  45. M. V. Stack, H. D. Donoghue, J. E. Tyler, M. Marshall, Comparaison of oral streptococci by pyrolysis gas-liquid chromatography, in: “Analytical Pyrolysis” C. E. R. Jones, C. A. Cramers, eds., Elsevier, Amsterdam, p. 57 (1977).

    Chapter  Google Scholar 

  46. M. V. Stack, H. D. Donoghue, and J. E. Tyler, Differentiation of Streptococcus mutans serotypes by discriminant analysis of pyrolysis-gas-liquid Chromatographic data, J. Anal. Appl. Pyrolysis 3: 221 (1981/1982).

    Article  Google Scholar 

  47. D. Pritchard, J. E. Colligan, S. E. Speed, and B. M. Gray, Carbohydrate fingerprints of streptococcal cells, J. Clin. Microbiol. 13: 89 (1981).

    PubMed  CAS  Google Scholar 

  48. D. G. Pritchard, G. B. Brown, B. M. Gray, and J. E. Coligan, Glucitol is present in the group-specific polysaccharide of group B streptococcus, Current Microbiol. 5: 283 (1981).

    Article  CAS  Google Scholar 

  49. D. G. Pritchard, B. M. Gray, and H. C. Dillon, Characterization of the group-specific polysaccharide of group B streptococcus, Arch. Biochem. Biophys. 235: 385 (1984).

    Article  PubMed  CAS  Google Scholar 

  50. J. Szafranek and A. Wisniewski, Gas Chromatographic and mass spectrometric analyses of the acid-catalyzed dehydration reactions of D-mannitol, J. Chromatogr. 161: 213 (1978).

    Article  CAS  Google Scholar 

  51. G. J. Gerwig, J. P. Kamerling, and J. F. G. Vliegenthart, Anhydroalditols in the sugar analysis of methanolysates of alditols and oligosaccharide-alditols, Carbohydr. Res. 129: 149 (1984).

    Article  CAS  Google Scholar 

  52. A. Ohnishi, K. Kato, and E. Takagi, Curie-point pyrolysis of cellulose, Polymer J. 7: 431 (1975).

    Article  CAS  Google Scholar 

  53. F. Shafizadeh, Introduction to pyrolysis of biomass, J. Anal. Appl. Pyrol. 3: 283 (1982).

    Article  CAS  Google Scholar 

  54. A. D. Pouwels, G. B. Eijkel, and J. J. Boon, Curie-point pyrolysis-capillary gas chromatography-high-resolution mass spectrometry of microcystalline cellulose, J. Anal. Appl. Pyrol. 14: 237 (1989).

    Article  CAS  Google Scholar 

  55. R. A. Franich, S. J. Goodin, and A. L. Wilkins, Acetamidofurans, acetamidopyrones, and acetamidoacetaldehyde from pyrolysis of chitin and N-acetylglucosamine, J. Anal. Appl. Pyrol. 7: 91 (1984).

    Article  CAS  Google Scholar 

  56. A. D. Pouwels, A. Tom, G. B. Eijkel, and J. J. Boon, Characterisation of beech wood and its holocellulose and xylan fractions by pyrolysis-gas chromatography-mass spectrometry, J. Anal. Appl. Pyrol. 11: 417 (1987).

    Article  CAS  Google Scholar 

  57. R. J. Helleur, E. R. Hayes, W. D. Jamieson, and J. S. Craigie, Analysis of polysaccharide pyrolysate of red algae by capillary gas chromatography-mass spectrometry, J. Anal. Appl. Pyrol. 8: 333 (1985).

    Article  CAS  Google Scholar 

  58. A. van der Kaaden, J. J. Boon, and J. Haverkamp, The analytical pyrolysis of carbohydrates. 2— Differentiation of homopolyhexoses according to their linkage type, by pyrolysis-mass spectrometry and pyrolysis-gas chromatography/mass spectrometry, Biomed. Mass Spectrom. 11: 486 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morgan, S.L., Watt, B.E., Ueda, K., Fox, A. (1990). Pyrolysis GC/MS Profiling of Chemical Markers for Microorganisms. In: Fox, A., Morgan, S.L., Larsson, L., Odham, G. (eds) Analytical Microbiology Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3564-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3564-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3566-3

  • Online ISBN: 978-1-4899-3564-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics