Skip to main content

Dilworth’s Completion, Submodular Functions, and Combinatorial Optimization

  • Chapter
The Dilworth Theorems

Part of the book series: Contemporary Mathematicians ((CM))

  • 352 Accesses

Abstract

The motivation behind Dilworth’s investigation in [5] is the question whether a lattice can be imbedded into a geometric lattice. This paper concentrates on quasimodular point lattices, i. e., point lattices L of finite length such that all maximal chains of L share the same length and the rank function f of L satisfies the weakened submodularity condition for all a, bL,

$$a \wedge b \ne 0\,implies f\left( {a \vee b} \right) + f\left( {a \wedge b} \right) \leqslant f\left( a \right) + f\left( b \right)$$
(1)

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aigner and T.A. Dowling, Matching theory for combinatorial geometries, Trans. Amer. Math. Soc. 158 (1971), 231–245.

    Article  Google Scholar 

  2. H.H. Crapo, Geometric duality and the Dilworth completion, in “Combinatorial Structures and their Applications,” R. Guy et al., eds., Gordon and Breach, New York, 1970, pp. 37–46.

    Google Scholar 

  3. P. Crawley and R.P. Dilworth, “Algebraic Theory of Lattices,” Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

    Google Scholar 

  4. W.H. Cunningham and A. Frank, A primal-dual algorithm for submodular flows, Math. Operations Res. 10 (1985), 251–262.

    Article  Google Scholar 

  5. R.P. Dilworth, Dependence relations in a semi-modular lattice, Duke Math. J. 11 (1944), 575–587. Reprinted in Chapter 5 of this volume.

    Article  Google Scholar 

  6. —, A decompostion theorem for partially ordered sets, Ann. of Math 51 (1950), 161–166. Reprinted in Chapter 1 of this volume.

    Article  Google Scholar 

  7. F.D.J. Dunstan, Matroids and submodular functions, Quart. J. Math., Oxford 27 (1976), 339–348.

    Article  Google Scholar 

  8. J. Edmonds, Matroids and the greedy algorithm, Math. Programming 1 (1971), 127–136.

    Article  Google Scholar 

  9. —, Submodular functions, matroids and certain polyhedra, in “Combinatorial Structures and Their Applications,” R. Guy et al., eds., Gordon and Breach, New York, 1970, pp. 69–87.

    Google Scholar 

  10. J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, Ann. Discrete Math. 1 (1977), 185–204.

    Article  Google Scholar 

  11. U. Faigle, Matroids in combinatorial optimization, in “Combinatorial Geometries,” N.L. White, ed., Cambridge Univ. Press, Cambridge, 1987, pp. 161–210.

    Chapter  Google Scholar 

  12. A. Frank, Generalized polymatroids, in “Finite and Infinite Sets,” A. Hajnal et al., eds., North-Holland, Amsterdam, 1984, pp. 285–294.

    Google Scholar 

  13. —, Matroids from crossing families, in “Finite and Infinite Sets,” A. Hajnal et al., eds., North-Holland, Amsterdam, 1984, pp. 295–304.

    Google Scholar 

  14. A. Frank and E. Tardos, Generalized polymatroids and submodular flows, Math. Programming 42 (1988), 489–563.

    Article  Google Scholar 

  15. S. Fujishige, Submodular systems and related topics., Math. Programming Study 22 (1984), 113–131.

    Article  Google Scholar 

  16. V.P. Grishuhin, Polyhedra related to a lattice, Math. Programming 21 (1981), 70–89.

    Article  Google Scholar 

  17. A.J. Hoffman, A generalization of max-flow min-cut, Math. Programming 6 (1974), 352–359.

    Article  Google Scholar 

  18. A.J. Hoffman and D.E. Schwartz, On lattice polyhedra, in “Combinatorics,” A. Hajnal and V.T. Sós, eds., North-Holland, Amsterdam, 1978, pp. 593–598.

    Google Scholar 

  19. E.L. Lawler and C.U. Martel, Computing maximal “polymatroidal” network flows, Math. Operations Res. 3 (1982), 334–347.

    Article  Google Scholar 

  20. L. Lovász, Flats in matroids and geometric graphs, in “Combinatorial Surveys,” P. Cameron, ed., Academic Press, London, 1977, pp. 45–86.

    Google Scholar 

  21. —, Submodular functions and convexity, in “Mathematical Programming—The State of the Art,” A. Bachem et al., eds., Springer-Verlag, Berlin and New York, 1983, pp. 235–257.

    Chapter  Google Scholar 

  22. C.J.H. McDiarmid, Rado’s theorem for polymatroids, Math. Proc. Cambridge Phil. Soc. 78 (1975), 263–281.

    Article  Google Scholar 

  23. H.Q. Nguyen, Semi-modular functions and combinatorial geometries, Trans. Amer. Math. Soc. 238 (1978), 355–383.

    Article  Google Scholar 

  24. —, Semimodular functions, in “Theory of Matroids,” N.L. White, ed., Cambridge Univ. Press, Cambridge, 1986, pp. 272–297.

    Chapter  Google Scholar 

  25. P. Pudlák and J. Tůma, Every lattice can be embedded in the lattice of all equivalences over a finite set, Algebra Universalis 10 (1980), 74–95.

    Article  Google Scholar 

  26. A. Schrijver, Total dual integrality from directed graphs, crossing families, and sub-and supermodular functions., in “Progress in Combinatorics,” W.R. Pulleyblank, ed., Academic Press, New York, 1984, pp. 315–361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faigle, U. (1990). Dilworth’s Completion, Submodular Functions, and Combinatorial Optimization. In: Bogart, K.P., Freese, R., Kung, J.P.S. (eds) The Dilworth Theorems. Contemporary Mathematicians. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-3558-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3558-8_28

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-3560-1

  • Online ISBN: 978-1-4899-3558-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics