Skip to main content

Dilworth’s Covering Theorem for Modular Lattices

  • Chapter
The Dilworth Theorems

Part of the book series: Contemporary Mathematicians ((CM))

  • 349 Accesses

Abstract

Everyone, it seems, has his favourite “Dilworth’s Theorem”! At least that is what I was led to believe, almost twenty years ago, when a referee protested that our use of the phrase in an article’s title was too vague [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Dilworth, Lattices with unique irreducible decompositions, Ann. of Math. 41 (1940), 771–777. Reprinted in Chapter 3 of this volume.

    Article  Google Scholar 

  2. R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161–166. Reprinted in Chapter 1 of this volume.

    Article  Google Scholar 

  3. R.P. Dilworth, Proof of a conjecture on finite modular lattices, Ann. of Math. 60 (1954), 359–364. Reprinted in Chapter 4 of this volume.

    Article  Google Scholar 

  4. D. Duffus, Matching in modular lattices, J. Combin. Theory, Ser. A 32 (1982), 303–314.

    Article  Google Scholar 

  5. D. Duffus, Matching in modular lattices, Order 1 (1985), 411–413.

    Article  Google Scholar 

  6. B. Ganter and I. Rival, Dilworth’s covering theorem for modular lattices: a simple proof, Algebra Universalis 3 (1973), 348–350.

    Article  Google Scholar 

  7. C. Greene, A rank inequality for finite geometric lattices, J. Comb. Theory 9 (1970), 357–364.

    Article  Google Scholar 

  8. M. Hall and R.P. Dilworth, The imbedding problem for modular lattices, Ann. of Math. 45 (1944), 450–456. Reprinted in Chapter 4 of this volume.

    Article  Google Scholar 

  9. Ch. Herrmann, S-Verklebte Summen von Verbänden, Math. Z. 130 (1973), 225–274.

    Article  Google Scholar 

  10. J.P.S. Kung, Matchings and Radon transforms in lattices, I. Consistent lattices, Order 2 (1985), 105–112.

    Article  Google Scholar 

  11. J.P.S. Kung, Matchings and Radon transforms in lattices II. Concordant sets, Math. Proc. Cambridge Philosophical Society 101 (1987), 221–231.

    Article  Google Scholar 

  12. G.C. Kurinnoi, A new proof of Dilworth’s theorem, Russian, Vestnik Charkov Univ. 93 (1973), 11–15.

    Google Scholar 

  13. K. Reuter, Counting formulas for glued lattices, Order 1 (1985), 265–276.

    Article  Google Scholar 

  14. K. Reuter, Matchings for linearly indecomposable modular lattices, Discrete Math. 63 (1987), 245–249.

    Article  Google Scholar 

  15. I. Rival, Maximal sublattices of finite distributive lattices, Proc. Amer. Math. Soc. 37 (1973), 417–420.

    Article  Google Scholar 

  16. I. Rival, “Contributions to combinatorial lattice theory,” Ph. D. Thesis, University of Manitoba, Winnipeg, 1974.

    Google Scholar 

  17. I. Rival, Combinatorial inequalities for semimodular lattices of breadth two, Algebra Universalis 6, no. 3 (1976), 303–311.

    Article  Google Scholar 

  18. I. Rival (ed.), “Symposium on Ordered Sets,” D. Reidel Publ. Co., Dordrecht, 1982.

    Google Scholar 

  19. I. Rival (ed.), “Combinatorics and Ordered Sets,” Contempary Math., Amer. Math. Soc., Providence, 1986.

    Google Scholar 

  20. G.-C. Rota, On the foundations of combinatorial theory, I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368.

    Article  Google Scholar 

  21. L. Weisner, Abstract theory of inversion of finite series, Trans. Amer. Math. Soc. 38 (1935), 474–484.

    Article  Google Scholar 

  22. R. Wille, Tensorial decomposition of concept lattices, Order 2 (1985), 81–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rival, I. (1990). Dilworth’s Covering Theorem for Modular Lattices. In: Bogart, K.P., Freese, R., Kung, J.P.S. (eds) The Dilworth Theorems. Contemporary Mathematicians. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-3558-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3558-8_25

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-3560-1

  • Online ISBN: 978-1-4899-3558-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics