Skip to main content

Evolution of Genes for the β-Ketoadipate Pathway in Acinetobacter Calcoaceticus

  • Chapter
The Biology of Acinetobacter

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 57))

Abstract

The β-ketoadipate pathway (Fig. 1) is widely distributed in the microbial world (Stanier et al., 1966; Ornston and Ornston, 1972; Stanier and Ornston, 1973; Cain, 1980; Parke and Ornston, 1984) and was one of the first subjects of physiological investigation of enzyme induction in bacteria (Stanier, 1951). Enzymes associated with the pathway proved to be inducible in fluorescent Pseudomonas species, and later studies revealed that mechanisms of transcriptional control were conserved in this biological group (Ornston, 1966; Kemp and Hegeman, 1968). Representatives of Acinetobacter (formerly Moraxella) share induction patterns unlike those found in Pseudomonas (Ornston, 1966; Canovas and Stanier, 1967; Canovas et al., 1967; Stanier and Ornston, 1973). Investigation of the genetic basis for the different forms of transcriptional regulation exercised in the two genera has given insight into processes underlying their evolutionary divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich, T. L., and Chakrabarty, A. M., 1988, Transcriptional regulation, nucleotide sequence, and localization of the promoter of the catBC operon in Pseudomonas putida, J. Bacteriol., 170:1297.

    PubMed  CAS  Google Scholar 

  • Aldrich, T. L., Frantz B., Gill B., Kilbane, J. F., and Chakrabarty, A. M., 1987, Cloning and complete nucleotide sequence determination of the catB gene encoding cis, cis-muconate lactonizing enzyme, Gene 52:185.

    Article  PubMed  CAS  Google Scholar 

  • Allewell, N., 1989, Evolving to dissimilate hydrocarbons, Trends in Biochem. Sci., 168:473.

    Article  Google Scholar 

  • Anderson, R. P., and Roth, J. R., 1977, Tandem genetic duplications in phage and bacteria, Ann. Rev. Microbiol., 31:473.

    Article  CAS  Google Scholar 

  • Cain, R. B., 1980, The uptake and catabolism of lignin-related aromatic compounds and their regulation in microorganisms, in “Lignin Biodegradation: Microbiology, Chemistry and Potential Applications, vol. 1,” p.21, T. Kent Kirk, T. Higuchi, and H. Chang, eds., CRC Press, Boca Raton FL.

    Google Scholar 

  • Canovas, J. L., and Johnson, B. F., 1968, Regulation of the enzymes of the β-ketoadipate pathway in Moraxella calcoacetica 4. Constitutive synthesis of β-ketoadipate succinyl-CoA transferases II and III, Eur. J. Biochem., 3:312.

    Article  PubMed  CAS  Google Scholar 

  • Canovas, J. L., and Stanier, R. Y., 1967, Regulation of the enzymes of the β-ketoadipate pathway in Moraxella calcoaceticus, Eur. J. Biochem., 1:289.

    Article  PubMed  CAS  Google Scholar 

  • Canovas, J. L., Ornston, L. N., and Stanier, R. Y., 1967, Evolutionary significance of metabolic control systems, Science 156:1695.

    Article  PubMed  CAS  Google Scholar 

  • Canovas, J. L., Wheelis, M. L., and Stanier, R. Y., 1968a, Regulation of the enzymes of the β-ketoadipate pathway in Moraxella calcoacetica 2. The role of protocatechuate as inducer, Eur. J. Biochem. 3:293.

    Article  PubMed  CAS  Google Scholar 

  • Canovas, J. L., Johnson, B. F., and Wheelis, M. L. 1968b, Regulation of the enzymes of the β-ketoadipate pathway in Moraxella calcoacetica 3. Effects of 3-hydroxy-4-methylbenzoate on the synthesis of enzymes of the protocatechuate branch, Eur. J. Biochem., 3:305.

    Article  PubMed  CAS  Google Scholar 

  • Chargaff, E., 1950, Chemical specificity of nucleic acids and mechanism of their enzymatic degradation, Experimentia, 6:201.

    Article  Google Scholar 

  • Chen, K.-S., Peters, T. C., and Walker, J. R., 1990, A minor arginine tRNA mutant limits translation preferentially of a protein dependent on the cognate codon, J. Bacteriol., 172:2504.

    PubMed  CAS  Google Scholar 

  • Doten, R. C., Ngai, K.-L., Mitchell, D. J., and Ornston, L. N., 1987a, Cloning and genetic organization of the pca gene cluster from Acinetobacter calcoaceticus, J. Bacteriol., 169:3168.

    PubMed  CAS  Google Scholar 

  • Doten, R. C., Gregg, L. A., and Ornston, L. N., 1987b, Influence of the catBCE sequence on the phenotypic reversion of a pcaE mutation in Acinetobacter calcoaceticus, J. Bacteriol., 169:3175.

    PubMed  CAS  Google Scholar 

  • Edelman, G. M., and Gaily, J. A., 1970, Arrangement and evolution of eukaryotic genes, in “The Neurosciences: Second Study Program,” p.962, F. O. Schmitt, ed., Rockefeller University Press, New York.

    Google Scholar 

  • Frantz, B., and Chakrabarty, A. M., 1987, Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation, Proc. Natl. Acad. Sci. USA, 84:4460.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, A., Ollis, D. L., Ngai, K.-L., and Steitz, T. A., 1985, Crystal structure of muconate lactonizing enzyme at 6.5 A resolution, J. Mol. Biol., 182:353.

    Article  PubMed  CAS  Google Scholar 

  • Grantham, R., Gautier, C., Gouy, M., Jacobzone, M., and Mercier, R., 1981, Codon catalog usage is a genome strategy modulated for gene expressivity, Nucl. Acids Res., 9:r43.

    Article  PubMed  CAS  Google Scholar 

  • Harayama, S., Lehrbach, P. R., and Timmis, K. N., 1984, Transposon mutagenesis analysis of meta-cleavage pathway operon genes of the TOL plasmid of Pseudomonas putida mt-2, J. Bacteriol., 160:251.

    PubMed  CAS  Google Scholar 

  • Hartnett, C.S., Neidle, EX., Ngai, K.-L., and Ornston, L.N., 1990, DNA sequences of genes encoding Acinetobacter calcoaceticus protocatechuate 3,4-dioxygenase: Evidence indicating shuffling of genes and of DNA sequences within genes during their evolutionary divergence, J. Bacteriol., 172:956.

    PubMed  CAS  Google Scholar 

  • Henikoff, S., Haughn, G. W., Calvo, J. M., and Wallace, J. C., 1988, A large family of activator proteins, Proc. Natl. Acad. Sci. USA, 85:6602.

    Article  PubMed  CAS  Google Scholar 

  • Hewetson, L., Dunn, H. M., and Dunn, N. W., 1978, Evidence for a transmissible catabolic plasmid in Pseudomonas putida encoding the degradation of p-cresol via the protocatechuate ortho cleavage pathway, Genet. Res., 32:249.

    Article  PubMed  CAS  Google Scholar 

  • Horuichi, T., Tomizawa, J., and Novick, A., 1962, Isolation and properties of bacteria capable of high rates of β-galactosidase, Biochim. Biophys. Acta, 55:152.

    Article  Google Scholar 

  • Hughes, J., Shapiro, M., Houghton, J., and Ornston, L.N., 1988, Cloning and expression of pca genes from Pseudomonas putida in Escherichia coli, J. Gen. Microbiol., 134:2877.

    PubMed  CAS  Google Scholar 

  • Ikemura, T., 1981a, Correlation between the abundance of E. coli transfer RNAs and the occurrence of the repetitive codon in protein genes, J. Mol. Biol., 146:1.

    Article  PubMed  CAS  Google Scholar 

  • Ikemura, T., 1981b, Correlation between the abundance of E. coli transfer RNAs and the occurrence of the repetitive codon in protein genes: a proposal for a synonymous codon choice that is optimal for E. coli translational system, J. Mol. Biol., 151:389.

    Article  PubMed  CAS  Google Scholar 

  • Ikemura, T., 1982, Correlation between the abundance of yeast transfer RNAs and the occurrence of the repetitive codon in protein genes: differences in synonymous codon choice patterns of yeast and E. coli with references to the abundance of isoacceptor transfer RNAs, J. Mol. Biol., 158:573.

    Article  PubMed  CAS  Google Scholar 

  • Jackowski, S., and Rock, C.O., 1986, Consequences of reduced intracelluiar coenzyme A content in Escherichia coli., J. Bacteriol., 166:866.

    PubMed  CAS  Google Scholar 

  • Jackson, E. N., and Yanofsky, C., 1973, Duplication-translocations of tryptophan operon gene in Escherichia coli, J. Bacteriol., 116:33.

    PubMed  CAS  Google Scholar 

  • Juni, E., 1972, Interspecies transformation of Acinetobacter: Genetic evidence for a ubiquitous genus, J. Bacteriol., 112:917.

    PubMed  CAS  Google Scholar 

  • Kaplan, J. B., Goncharoff, P., Seibold, A. M., and Nichols, B. P., 1984, Nucleotide sequence of the Acinetobacter calcoaceticus trpGDC gene cluster, Mol. Biol. Evol., 1:456.

    PubMed  CAS  Google Scholar 

  • Katti, S.K., Katz, B., and Wyckoff, H.W., 1988, Crystal structure of muconolactone isomerase at 3.3 A resolution, J. Mol. Biol., 205:557.

    Article  Google Scholar 

  • Katz, B., Ollis, D. L., and Wyckoff, H. W., 1985, Low resolution crystal structure of muconolactone isomerase, J. Mol. Biol., 184:311.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, M. B., and Hegeman, G. D., 1968, Genetic control of the β-ketoadipate pathway in Pseudomonas aeruginosa, J. Bacteriol., 96:1488.

    PubMed  CAS  Google Scholar 

  • Konigsberg, W., and Godson, G. N., 1983, Evidence for use of rare codons in the dnaG gene and other regulatory genes of Escherichia coli, Proc. Natl. Acad. Sci. USA, 80:687.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, T., 1985, Rapid and efficient site specific mutagenesis without phenotypic selection, Proc. Natl. Acad. Sci. USA, 82:488.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, T. A., and Soni, A., 1988, Mutagenesis by transient misalignment, J. Biol. Chem., 263:14784.

    PubMed  CAS  Google Scholar 

  • McCorkle, G. M., Yeh, W. K., Fletcher, P., and Ornston, L. N., 1980, Repetitions in the NH2-terminal amino acid sequence of β-ketoadipate enol-lactone hydrolase from Pseudomonas putida, J. Biol. Chem., 255:6335.

    PubMed  CAS  Google Scholar 

  • Meagher, R., Berry-Lowe, S., and Rice, K., 1989, Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: Nucleotide substitution and gene conversion, Genetics 123:845.

    PubMed  CAS  Google Scholar 

  • Meselson, M., 1988, Methyl directed repair of DNA mismatches, in “Recombination of Genetic Material,” p.91, K.B. Low, ed., Academic Press, New York.

    Google Scholar 

  • Muto, A., Kawauchi, Y., Yamao, F., and Osawa, S., 1984, Preferential use of A-and U-rich codons for Mycoplasma capricolom ribosomal proteins S8 and L6, Nucl. Acids Res., 12:8209.

    Article  PubMed  CAS  Google Scholar 

  • Nagylaki, T., and Petes, T.D., 1982, Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes, Genetics, 100:315.

    PubMed  CAS  Google Scholar 

  • Neidle, E.L., and Ornston, L.N., 1986, Cloning and expression of the Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene, catA, in Escherichia coli, J. Bacteriol., 168:815.

    CAS  Google Scholar 

  • Neidle, E.L., and Ornston, L.N., 1987, Benzoate and muconate, structurally dissimilar metabolites, induce expression of catA in Acinetobacter calcoaceticus, J. Bacteriol., 169:414.

    PubMed  CAS  Google Scholar 

  • Neidle, E.L., Shapiro, M., and Ornston, L. N., 1987, Cloning and expression in Escherichia coli of Acinetobacter calcoaceticus genes for benzoate degradation, J. Bacteriol., 169:5496.

    PubMed  CAS  Google Scholar 

  • Neidle, E. L., Hartnett, C., Bonitz, S., and Ornston, L. N., 1988, DNA sequence of the Acinetobacter calcoaceticus catechol 1,2-dioxygenase I structural gene catA: evidence for evolutionary divergence of intradiol dioxygenases by acquisition of DNA repetitions, J. Bacteriol., 170:4874.

    PubMed  CAS  Google Scholar 

  • Neidle, E. L., Hartnett, C. S., and Ornston, L. N., 1989, Characterization of Acinetobacter calcoaceticus catM, a repressor gene homologous in sequence to transcriptional activator genes, J. Bacteriol., 171:5410.

    PubMed  CAS  Google Scholar 

  • Ngai, K.-L., and Ornston, L. N., 1988, Abundant expression of Pseudomonas genes for chlorocatechol metabolism, J. Bacteriol., 170:2412.

    PubMed  CAS  Google Scholar 

  • Nomura, M., Gourse, R., and Baughman, G., 1984, Regulation of the synthesis of ribosomes and ribosomal components, Ann. Rev. Biochem., 53:75.

    Article  PubMed  CAS  Google Scholar 

  • Ohama, T., Yamao, F., Muto, A., and Osawa, S., 1987, Organization and codon usage of the streptomycin operon in Micrococcus luteus, a bacterium with a high genomic G + C content, J. Bacteriol., 169:4770.

    PubMed  CAS  Google Scholar 

  • Ohlendorf, D.H., Lipscomb, J. D., and Weber, P. C., 1988, Structure and assembly of protocatechuate 3,4-dioxygenase, Nature, 336:403.

    Article  PubMed  CAS  Google Scholar 

  • Ornston, L.N., 1966, The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida, IV. Regulation, J. Biol. Chem., 241:3800.

    PubMed  CAS  Google Scholar 

  • Ornston, M. K., and Ornston, L. N., 1972, The regulation of the β-ketoadipate pathway in Pseudomonas acidovorans and Pseudomonas testosteroni, J. Gen. Microbiol., 73:455.

    Article  PubMed  CAS  Google Scholar 

  • Ornston, L.N., and Stanier, R.Y., 1966, The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida. I. Biochemistry, J. Biol. Chem., 241:3776.

    PubMed  CAS  Google Scholar 

  • Ornston, L. N., and Yeh, W.K., 1979, Origins of metabolic diversity: Evolutionary divergence by sequence repetition, Proc. Natl. Acad. Sci. USA, 76:3996.

    Article  PubMed  CAS  Google Scholar 

  • Ornston, L.N., and Yeh, W. K., 1982, Recurring themes and repeated sequences in metabolic evolution, in “Biodegradation and Detoxification of Environmental Pollutants,” p.105, A.M. Chakrabarty, ed., CRC Press, Miami.

    Google Scholar 

  • Ornston, L. N., Neidle, E. L., and Houghton, J.E., 1990a, Gene rearrangements, a force for evolutionary change; DNA sequence arrangements, a source of genetic constancy, in “The Bacterial Chromosome,” p.325, M. Riley and K. Drlica, eds., American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Ornston, L. N., Houghton, J. E., Neidle, E. L., and Gregg, L. A., 1990b, Subtle selection and novel mutation during evolutionary divergence of the β-ketoadipate pathway, in “Pseudomonas: Biotransformation, Pathogenesis and Evolving Biotechnology,” p.207, S. Silver et al., eds., American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Orr-Weaver, T. L., Szostak, J. W., and Rothstein, R. J., 1983, Genetic applications of yeast transformation with linear and gapped plasmid, Meth. Enzymol., 101:228.

    Article  PubMed  CAS  Google Scholar 

  • Parke, D., and Ornston, L. N., 1984, Nutritional diversity of Rhizobiaceae revealed by auxanography, J. Gen. Microbiol., 130:1743.

    CAS  Google Scholar 

  • Patel, R. N., Mazumdar, S., and Ornston, L. N., 1975, β-Ketoadipate enol-lactone hydrolases I and II from Acinetobacter calcoaceticus, J. Biol. Chem., 250:6567.

    PubMed  CAS  Google Scholar 

  • Peoples, O. P., and Sinskey, A. J., 1989, Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16: Characterization of the genes encoding β-ketothiolase and acetoactyl-CoA reductase, J. Biol. Chem., 264:15293.

    PubMed  CAS  Google Scholar 

  • Rigby, P. W. J., Burleigh, B. D., and Hartley, B. S., 1974, Gene duplication in experimental enzyme evolution, Nature, 251:200.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, S. L., and Hegeman, G. D., 1969, Clustering of functionally related genes in Pseudomonas aeruginosa, J. Bacteriol., 108:1270.

    Google Scholar 

  • Rothmel, R. K., Aldrich, T. L., Houghton, J. E., Coco, W. M., Ornston, L. N., and Chakrabarty, A.M., 1990, Nucleotide sequencing and characterization of Pseudomonas putida catR: A positive regulator of the catBC operon is a member of the LysR family, J. Bacteriol., 172:922.

    PubMed  CAS  Google Scholar 

  • Schleif, R., 1988, DNA looping, Science, 240:127.

    Article  PubMed  CAS  Google Scholar 

  • Shanley, M. S., Neidle, E. L., Parales, R. E., and Ornston, L. N., 1986, Cloning and expression of Acinetobacter calcoaceticus cat BCDE genes in Pseudomonas putida and Escherichia coli, J. Bacteriol., 165:557.

    PubMed  CAS  Google Scholar 

  • Sharp, P.M., and Li, W.-H., 1986, Codon usage in regulatory genes in Escherichia coli does not reflect selection for “rare” codons, Nucl. Acids Res., 14:1131.

    Article  Google Scholar 

  • Stanier, R. Y., 1951, Enzymatic adaptation in bacteria, Ann. Rev. Microbiol., 5:35.

    Article  CAS  Google Scholar 

  • Stanier, R. Y., and Ornston, L. N., 1973, The β-ketoadipate pathway, in “Advances in Microbial Physiology, vol.9,” p.89, A. H. Rose and D. W. Tempest, eds., Academic Press, London.

    Google Scholar 

  • Stanier, R. Y., Palleroni, N. J., and Doudoroff, M., 1966, The aerobic Pseudomonads: A taxonomic study, J. Gen. Microbiol., 43:159.

    Article  PubMed  CAS  Google Scholar 

  • Tresguerres, M. E. F., de Torrontequi, G., Ingledew, W. M., and Canovas, J. L., 1970, Regulation of enzymes of the β-ketoadipate pathway in Moraxella: Control of quinate oxidation by protocatechuate, Eur. J. Biochem., 14:445.

    Article  PubMed  CAS  Google Scholar 

  • West, S.E.H., and Iglewski, B., 1988, Codon usage in Pseudomonas aeruginosa, Nucl. Acids Res., 16:9323.

    Article  PubMed  CAS  Google Scholar 

  • Wheelis, M.L., 1975, The genetics of dissimilarity pathways in Pseudomonas aeruginosa, Ann. Rev. Microbiol., 29:505.

    Article  CAS  Google Scholar 

  • Wheelis, M. L., and Ornston, L. N., 1972, Genetic control of enzyme induction in the β-ketoadipate pathway of Pseudomonas putida: Deletion mapping of cat mutations, J. Bacteriol., 108:790.

    Google Scholar 

  • Wheelis, M. L., and Stanier, R. Y., 1970, The genetic control of dissimilatory pathways in Pseudomonas putida, Genetics, 66:245.

    PubMed  CAS  Google Scholar 

  • Widom, R. L., Jarvis, E. D., LaFauci, G., and Rudner, R., 1988, Instability of rRNA operons in Bacillus subtilis, J. Bacteriol., 170:605.

    PubMed  CAS  Google Scholar 

  • Winstanley, C., Taylor, S. C., and Williams, P. A., 1987, pWW174: A large plasmid from Acinetobacter calcoaceticus encoding benzene catabolism by the β-ketoadipate pathway, Mol. Microbiol., 1:219.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., Sakaguchi, B., and Eickbush, T. H., 1988, Gene conversions can generate sequence variants in the late chorion multigene families of Bombyx mori, Genetics, 120:221.

    Google Scholar 

  • Yeh, W. K., and Ornston, L. N., 1980, Origins of metabolic diversity: Substitution of homologous sequences into genes for enzymes with different catalytic activities, Proc. Natl. Acad. Sci. USA, 77:5365.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, W. K., and Ornston, L. N., 1981, Evolutionary homologous α2β2 oligomeric structures in β-ketoadipate succinyl CoA transferases from Acinetobacter calcoaceticus and Pseudomonas putida, J. Biol. Chem., 256:1565.

    PubMed  CAS  Google Scholar 

  • Yeh, W.K., Davis, G., Fletcher, P., and Ornston, L.N., 1978, Homologous amino acid sequences in enzymes mediating sequential metabolic reactions, J. Biol. Chem., 253:4920.

    PubMed  CAS  Google Scholar 

  • Yeh, W. K., Fletcher, P., and Ornston, L. N., 1980a, Evolutionary divergence of coselected β-ketoadipate enol-lactone hydrolases in Acinetobacter calcoaceticus, J. Biol. Chem., 255:6342.

    PubMed  CAS  Google Scholar 

  • Yeh, W. K., Fletcher, P., and Ornston, L. N., 1980b, Homologies in the NH2-terminal amino acid sequence of γ-carboxymuconolactone decarboxylases and muconolactone isomerases, J. Biol. Chem. 255:6347.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ornston, L.N., Neidle, E.L. (1991). Evolution of Genes for the β-Ketoadipate Pathway in Acinetobacter Calcoaceticus . In: Towner, K.J., Bergogne-Bérézin, E., Fewson, C.A. (eds) The Biology of Acinetobacter . Federation of European Microbiological Societies Symposium Series, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3553-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3553-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3555-7

  • Online ISBN: 978-1-4899-3553-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics