Skip to main content

Multifractality, Scaling, and Diffusive Growth

  • Chapter

Part of the book series: Ettore Majorana International Science Series ((EMISS))

Abstract

The formation of branched, ramified, fractal structures in pattern formation limited by diffusion was first pointed out by Witten and Sander in 1981.1 In the intervening years, the study of such patterns has blossomed into a major area of non-linear physics. We have gradually learned, and are still learning, the correct concepts in which to couch quantitative discussion of the problem. One of the key such concepts is the multifractal structure of the growth probability distribution of a diffusion-limited pattern.2,3 In this contribution, I shall argue that this structure, as encoded in the f(α) function of the distribution, provides not merely a rich phenomenological description of the patterns, as has been widely realized. It also gives the foundation on which a more physical scaling picture of diffusion-limited growth may be built.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.A. Witten, Jr. and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  CAS  Google Scholar 

  2. T.C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. Lett. 56, 854 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B. Shraiman, Phys. Rev. A 33, 1141 (1986).

    Article  PubMed  Google Scholar 

  4. P. Meakin, Phys. Rev. A 27, 1495 (1983).

    Article  Google Scholar 

  5. L. Pietronero and H.J. Wiesmann, J. Stat. Phys. 36, 909 (1984).

    Article  Google Scholar 

  6. L. Niemeyer, L. Pietronero, and H.J. Wiesmann, Phys. Rev. Lett. 52. 1033 (1984).

    Article  Google Scholar 

  7. M. Eden, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 4, J. Neyman, ed. (University of California Press, Berkeley, 1961) p. 223.

    Google Scholar 

  8. S.R. Forrest and T.A. Witten, Jr., J. Phys. A 12, L109 (1979).

    Article  CAS  Google Scholar 

  9. D. Bensimon, L.P. Kadanoff, S. Liang, B. I. Shraiman, and C. Tang, Rev. Mod. Phys. 58, 977 (1986), and references therein.

    Article  Google Scholar 

  10. R. Brady and R.C. Ball, Nature (London) 309, 225 (1984)

    Article  CAS  Google Scholar 

  11. M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and Y. Sawada, Phys. Rev. Lett. 53, 286 (1984).

    Article  CAS  Google Scholar 

  12. P. Meakin, H.E. Stanley, A. Coniglio, and T.A. Witten, Jr., Phys. Rev. A 32, 2364 (1985).

    Article  Google Scholar 

  13. U. Frisch and G. Parisi, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, Proc. of Int. School of Physics “Enrico Fermi” LXXXVIII, M. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, Amsterdam, 1985) p. 84.

    Google Scholar 

  14. C. Amitrano, A. Coniglio, and F. di Liberto, Phys. Rev. Lett. 57, 1016 (1986)

    Article  PubMed  Google Scholar 

  15. Y. Hayakawa, S. Sato, and M. Matsushita, Phys. Rev. A 36, 1963 (1987).

    Article  PubMed  Google Scholar 

  16. J. Lee and H.E. Stanley, Phys. Rev. Lett. 61, 2945 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. L. Turkevich and H. Scher, Phys. Rev. Lett. 55, 1026 (1985); Phys. Rev. A 33, 786 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. T.C. Halsey, Phys. Rev. A 38, 4749 (1988). Note that the generalization of the Turkevich-Scher law to arbitrary η, Equation (IV.8), is different from that originally proposed in Reference 15.

    Google Scholar 

  19. T.C. Halsey, Phys. Rev. Lett. 59, 2067 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. C. Amitrano, unpublished.

    Google Scholar 

  21. See, e.g., M.H. Jensen, L.P. Kadanoff, and I. Procaccia, Phys. Rev. A 36, 1409 (1987).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Halsey, T.C. (1989). Multifractality, Scaling, and Diffusive Growth. In: Pietronero, L. (eds) Fractals’ Physical Origin and Properties. Ettore Majorana International Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3499-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3499-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3501-4

  • Online ISBN: 978-1-4899-3499-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics