Skip to main content

Dynamics of Invasion and Dispersion Fronts

  • Chapter
Fractals’ Physical Origin and Properties

Abstract

The displacement of one fluid by a another fluid in a porous medium is a process of both scientific and practical importance. Depending on the displacement rates, viscosity ratios, irascibility, interfacial tensions and pore geometry a bewildering variety of displacement front behaviors arises. Lenormand1–4 has studied many of the regimes observed under various conditions during two-fluid displacement processes in micromodels of porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenormand R. and Zarcone C. Physico-Chemical Hydrodynamics, 6, 497, (1985).

    Google Scholar 

  2. Lenormand R. and Zarcone C. Phys. Rev. Lett, 54, 2226–2229, (1985).

    Article  PubMed  Google Scholar 

  3. Lenormand R. C. R. Acad. Sci. Paris Ser. II, 301, 247–250, (1985).

    CAS  Google Scholar 

  4. Lenormand R. J. Fluid Mech., 189, 165, (1988).

    Article  CAS  Google Scholar 

  5. Chen J. D. and Wilkinson D. Phys. Rev. Lett., 55, 1892–1895, (1985).

    Article  PubMed  CAS  Google Scholar 

  6. Måløy K. J., Feder J., and Jøssang T. Phys. Rev. Lett., 55, 2688–2691, (1985).

    Article  Google Scholar 

  7. Mandelbrot B. B. The Fractal Geometry of Nature. W. H. Freeman, New York, 1982.

    Google Scholar 

  8. Feder J. Fractals. Plenum, New York, 1988.

    Book  Google Scholar 

  9. Witten T. A. and Sander L. M. Phys. Rev. Lett., 47, (1981).

    Google Scholar 

  10. Vicsek T. Fractal Growth Phenomena. World Scientific, Singapore, 1988.

    Google Scholar 

  11. Nittmann J., Daccord G., and Stanley H. E. Nature, 314, 141–144, (1985).

    Article  CAS  Google Scholar 

  12. Paterson L. Phys. Rev. Lett., 52, 1621–1624, (1984).

    Article  CAS  Google Scholar 

  13. Deutch J. M. and Meakin P. J. Chem. Phys., 78, 2093, (1983).

    Article  CAS  Google Scholar 

  14. Hentschel H. G. E., Deutcli J. M., and Meakin P. J. Chem. Phys., 81, 2496, (1984).

    Article  CAS  Google Scholar 

  15. Meakin P. and Deutch J. M. J. Chem. Phys., 80, 2115, (1984).

    Article  CAS  Google Scholar 

  16. Voss R. F. J. Phys. A, 17, L373–L377, (1984).

    Article  Google Scholar 

  17. Måløy K. J., Boger F., Feder J., and Jøssang T. In Pynn R. and Riste T., editors, Time-Dependent Effects in Disordered Materials, pages 111–138, Plenum Press, New York, 1987.

    Chapter  Google Scholar 

  18. Meakin P. Fractal aggregates and their fractal measures. In Domb C. and Lebowitz J. L., editors, Phase Transitions and Critical Phenomena, pages 336–489, Academic Press, New York, 1987.

    Google Scholar 

  19. Lee J. and Stanley H. E. Phys. Rev. Lett., 61, 2945–2948, (1985).

    Article  Google Scholar 

  20. Hinrichsen E. L., Måløy K. J., Feder J., and Jøssang T. J. Phys. A: Math. Gen., (1989), in press.

    Google Scholar 

  21. Chandler R., Koplik J., Lerman K., and Wfflemsen J. F. J. Fluid Mech., 119, 249–267, (1982).

    Article  Google Scholar 

  22. Wilkinson D. and Willemsen J. F. J. Phys. A, 16, 3365–3376, (1983).

    Article  Google Scholar 

  23. Furuberg L., Feder J., Aharony A., and Jössang T. Phys. Rev. Lett., 61, 2117–2120, (1988).

    Article  PubMed  CAS  Google Scholar 

  24. Mandelbrot B. B. Phys. Scr., 32, 257–260, (1985).

    Article  Google Scholar 

  25. Mandelbrot B. B. In Pietronero L. and Tosatti E., editors, Fractals in Physics, pages 3–28, North-Holland, Amsterdam, 1986.

    Google Scholar 

  26. de Gennes P. G. and Guyon E. J. Mec, 17, 403–432, (1978).

    Google Scholar 

  27. Lenormand R. C. R. Acad. Sci. Paris B, 291, 279, (1980).

    Google Scholar 

  28. Essam J. W. Rep. Prog. Phys., 43, 833–912, (1980).

    Article  CAS  Google Scholar 

  29. Stauffer D. Introduction to Percolation Theory. Taylor, Francis, London, 1985.

    Book  Google Scholar 

  30. Aharony A. Percolation. In Grinstein G. and Mazenko G., editors, Directions in Condensed Matter Physics, pages 1–50, World Scientific, Singapore, 1986.

    Google Scholar 

  31. Feder J., Jøssang T., Måløy K. J., and Oxaal U. In Englman R. and Jaeger Z., editors, Fragmentation Form and Flow in Fractured Media, pages 531-548, 1986. Ann. Isr. Phys. Soc. 8.

    Google Scholar 

  32. Shaw T. M. Better Ceramics Trough Chemistry II, Materials Research Society Symposia Proceedings, 73, 1671, (1986).

    Google Scholar 

  33. Shaw T. M. Phys. Rev. Lett., 59, 1671–1674, (1987).

    Article  PubMed  CAS  Google Scholar 

  34. Grossman T. and Aharony A. J. Phys. A, 19, L745–L751, (1986).

    Article  Google Scholar 

  35. Hoshen J. and Kopelman R. Phys. Rev. B, 14, 3428, (1976).

    Google Scholar 

  36. Sapoval B., Rosso M., and Gouyet J. F. J. Phys. Lett., 46, L149–L156, (1985).

    Article  Google Scholar 

  37. Sapoval B., Rosso M., Gouyet J. F., and Colonna J. F. Solid State Ionics, 18, 21–30, (1986).

    Article  Google Scholar 

  38. Meakin P. Fractal aggregates and their fractal measures. In Domb C. and Lebowitz J. L., editors, Phase Transitions and Critical Phenomena, pages 336–489, Academic Press, New York, 1987.

    Google Scholar 

  39. Furuberg L. Computer Simulations of Percolation Phenomena. Master’s thesis, University of Oslo, 1988.

    Google Scholar 

  40. Måløy K. J., Feder J., and Jøssang T. 1985. Unpublished observations made during the preparation of reference[30].

    Google Scholar 

  41. Saffman P. G. J. Fluid Mech., 6, 321, (1959).

    Article  Google Scholar 

  42. Saffman P. G. J. Fluid Mech., 7, 194, (1960).

    Article  Google Scholar 

  43. Bear J. Dynamics of fluids in porous media. American Elsevier, New York, 1972.

    Google Scholar 

  44. Scheidegger A. E. The physics of flow through porous media. University of Toronto Press, Toronto, 1974.

    Google Scholar 

  45. Dullien A. L. Fluid Transport and Pore Structure. Academic Press, New York, 1979.

    Google Scholar 

  46. Sahimi M., Davis H. T., and Scriven L. E. Chem. Eng. Com., 23, 329, (1983).

    Article  CAS  Google Scholar 

  47. Sahimi M. J. Phys. A, 20, L1293, (1987).

    Article  CAS  Google Scholar 

  48. Koch D. F. and Brady J. F. J. Fluid Mech., 154, 399, (1985).

    Article  CAS  Google Scholar 

  49. Baudet C., Charlaix E., Clement E., Guyon E. Hulin F. P., and Leroy C. In Pynn R. and Riste T., editors, Scaling Phenomena In Disordered Systems, pages 399-422, Plenum, 1985.

    Google Scholar 

  50. de Arcangelis L., Koplik J., Redner S., and Wilkinson D. Phys. Rev. Lett., 57, 996, (1986).

    Article  PubMed  Google Scholar 

  51. Charlaix E., Hulin J. P., and Plona T. J. Phys. Fluids, 30, 1690, (1987).

    Article  Google Scholar 

  52. de Gennes P. G. J. Fluid Mech., 136, 189, (1983).

    Article  Google Scholar 

  53. Gefen Y., Aharony A., and Alexander S. Phys. Rev. Lett., 50, 77–80, (1983).

    Article  Google Scholar 

  54. Taylor G. I. Pros. Roy. Soc. A, 219, 186, (1953).

    Article  CAS  Google Scholar 

  55. Koplik J., Redner S., and Wilkinson D. Phys. Rev. A, 37, 2619, (1988).

    Article  PubMed  Google Scholar 

  56. Scaling functions which vanish both at small and large arguments were seen before [Kolb M., and Herrmann H. J., J. Phys. A 18, L435 (1985)] in other problems, but they have not been analyzed for power law behavior.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feder, J., Jøssang, T., Furuberg, L., Måløy, K.J., Boger, F., Aharony, A. (1989). Dynamics of Invasion and Dispersion Fronts. In: Pietronero, L. (eds) Fractals’ Physical Origin and Properties. Ettore Majorana International Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3499-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3499-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3501-4

  • Online ISBN: 978-1-4899-3499-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics