Skip to main content

Shapes of Deterministic Cracks Obtained under Shear

  • Chapter

Part of the book series: Ettore Majorana International Science Series ((EMISS))

Abstract

Cracks are grown in a system submitted to external shear by solving the full Lamé equation on a two-dimensional lattice. One finds that deterministic fracture patterns are in general branched and can be fractal. This effect is due to the competition between the direction of global stress and the local growth direction imposed by the lattice anisotropy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e.g. H. Liebowitz (ed.), Fracture, Vols. I–VII, (Academic Press, New York, 1984)

    Google Scholar 

  2. H.J. Herrmann in Random Fluctuations and Pattern Growth, eds. H.E. Stanley and N. Ostrowsky (Kluwer, Dordrecht, 1988), p.149

    Chapter  Google Scholar 

  3. L. de Arcangelis, S. Redner and H.J. Herrmann, J. Physique Lett. 46, L585 (1985)

    Article  Google Scholar 

  4. P.M. Duxbury, P.D. Beale and P.L. Leath, Phys. Rev. Lett. 57, 1052 (1986)

    Article  PubMed  CAS  Google Scholar 

  5. P.M. Duxbury and P.L. Leath, J. Phys. A 20, L411 (1987)

    Article  Google Scholar 

  6. P.D. Beale and D.J. Srolovitz, Phys. Rev. B 37, 5500 (1988) and references therein

    Article  Google Scholar 

  7. B. Kahng, G.G. Batrouni, S. Redner, L. de Arcangelis and H.J. Herrmann, Phys. Rev. B 37, 7625 (1988)

    Article  Google Scholar 

  8. H.J. Herrmann, A. Hansen and S. Roux, Phys. Rev. B 39, 637 (1989) and references therein

    Article  Google Scholar 

  9. T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981)

    Article  CAS  Google Scholar 

  10. L. Niemeyer, L. Pietronero and H.J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984)

    Article  Google Scholar 

  11. E. Louis, F. Guinea and F. Flores in Fractals in Physics eds. L. Pietronero and E. Tossatti (Elsevier, Amsterdam, 1986), p.117

    Google Scholar 

  12. E. Louis and F. Guinea, Europhys. Lett. 3, 871 (1987)

    Article  Google Scholar 

  13. E.L. Hinrichsen, A. Hansen and S. Roux, Europhys. Lett. 8, 1 (1989); P. Meakin, G. Li, L.M. Sander, E. Louis and F. Guinea, J.Phys. A to be published

    Article  Google Scholar 

  14. L.D. Landau and E.M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1986)

    Google Scholar 

  15. S. Roux and E. Guyon, J. Physique Lett. 46, L999 (1985)

    Article  Google Scholar 

  16. G.G. Batrouni and A. Hansen, J. Stat. Phys. 52, 747 (1988)

    Article  Google Scholar 

  17. C. Tang, Phys. Rev. A, 31, 1977 (1985)

    Article  PubMed  Google Scholar 

  18. J. Szép, J. Cserti and J. Kertész, J. Phys. A 18, L413 (1985)

    Google Scholar 

  19. J. Nittmann and H.E. Stanley, Nature 321, 661 (1986)

    Article  Google Scholar 

  20. J. Kertész and T. Vicsek, J. Phys. A 19, L257 (1986)

    Article  Google Scholar 

  21. J. Fernandez, F. Guinea and E. Louis, J. Phys. A 21, L301 (1988)

    Article  Google Scholar 

  22. B.B. Mandelbrot and T. Vicsek, J. Phys. A to be published

    Google Scholar 

  23. H.J. Herrmann, J. Kertész and L. de Arcangelis, in preparation

    Google Scholar 

  24. F. Family, D.E. Platt and T. Vicsek, J. Phys. A 20, L1177 (1987)

    Article  Google Scholar 

  25. J.P. Eckmann, P. Meakin, I. Procaccia and R. Zeitak, Phys. Rev. A preprint

    Google Scholar 

  26. M.J. Blackburn, W.H. Smyrl and J.A. Feeney, in Stress Corrosion in High Strength Steels and in Titanium and Aluminium Alloys, ed. B.F. Brown (Naval Res. Lab., Washington, 1972), p.344

    Google Scholar 

  27. H. Takayasu in Fractals in Physics, eds. L. Pietronero and E. Tossatti (Elsevier, Amsterdam, 1986), p. 181

    Google Scholar 

  28. H. Takayasu, Phys. Rev. Lett. 54, 1099 (1985)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Herrmann, H.J. (1989). Shapes of Deterministic Cracks Obtained under Shear. In: Pietronero, L. (eds) Fractals’ Physical Origin and Properties. Ettore Majorana International Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3499-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3499-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3501-4

  • Online ISBN: 978-1-4899-3499-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics