Skip to main content

Future Trends

  • Chapter
Adult Aural Rehabilitation
  • 77 Accesses

Abstract

Hearing aids have recently been enjoying a comparatively widespread market acceptance due to improvements in component design and miniaturization, advanced production techniques and increased public awareness of the potential benefits that may be derived from amplification. Statistics published by the Hearing Industries Association show that over 1 268 000 hearing aids were sold in the United States in 1985 (Mahon, 1987). Worldwide about 3.4 million aids were supplied in 1984 (Skadegard, 1985). While the overall market grew from 1986 to 1987 by only 11% in the US, sales of in-the-ear (ITE) aids were about 19% ahead of their 1986 total, accounting for about 64% of the total hearing-aid sales. Included within the statistics for ITE-type aids are sales figures for in-the-canal (ITC) aids, which made up about 11% of total sales in 1986 and 14% in 1987. Postauricular aid sales were down about 16% from 1986 to 1987, accounting for 21% of US hearing aid sales. Worldwide, ITE aids are gaining in popularity but are not the dominant type in any other country besides the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramovitz, R. (1980) Frequency shaping and multiband compression in hearing aids. J. Commun. Dis., 13, 483–8.

    Article  CAS  Google Scholar 

  • Barfod, J. (1976) Multi-channel compression hearing aids. Report 11, The Acoustics Lab., Tech. Univ. of Denmark.

    Google Scholar 

  • Beex, A. (1980) Moving-average notchfilter, US Patent 4, 232–192.

    Google Scholar 

  • Bennett, M., Srikandan, S. and Browne, L. (1980) A controlled feedback hearing aid. Hear. Aid J., 12, December, 42–3.

    Google Scholar 

  • Berger, K. and Hagberg, E. (1982) Hearing aid attitudes and hearing aid usage. Monographs in Contemporary Audiology, 3 (4), 10.

    Google Scholar 

  • Berger, K., Abel, D., Hagberg, E., Puzz, L., Varavvas, D. and Weldele, F. (1982) Successes and problems of hearing aid users. Hear. Aid J., 14, 26–30.

    Google Scholar 

  • Berland, O. and Nielsen, T. (1968) Sound pressure generated in the human external ear by a free sound field, Oticon Laboratories, October, Copenhagen, Denmark.

    Google Scholar 

  • Boner, C.P. and Boner, C.R. (1965) A procedure for controlling room-ring modes and feedback modes in sound systems with narrow-band filters. J. Audio Eng. Soc., 13, 4.

    Google Scholar 

  • Braida, L., Durlach, N., De Gennaro, S., Peterson, P. and Bustamante, D. (1982) Review of recent research on multiband amplitude compression for the hearing impaired. Vanderbilt Hearing Aid Report (eds G. Studebaker and F. Bess), Upper Darby, Pa: 133–40.

    Google Scholar 

  • Burchfield, S. (1970) Perception of amplitude compressed speech by persons exhibiting loudness recruitment, unpublished PhD dissertation, Michigan State Univ.

    Google Scholar 

  • Burnett, E. and Schweitzer, H. (1977) Attack and release times of automaticgain-control hearing aids. J. Acoust. Soc. Amer., 62, 784–6.

    Article  CAS  Google Scholar 

  • Byrne, D. and Walker, G. (1982) The effects of multichannel compression and expansion amplification on perceived quality of speech. Aust. J. Audiol., 4, (1), 1–8.

    Google Scholar 

  • Caraway, B.J. and Carhart, R. (1967) Influence of compressor action on speech intelligibility. J. Acoust. Soc. Amer., 41, 1424–33.

    Article  CAS  Google Scholar 

  • Cranmer, K. (1983) Hearing-aid dispensing — 1983. Hear. Instrum., 34 (5), 11.

    Google Scholar 

  • Cranmer, K. (1987) Hearing-aid dispensing — 1987. Hear. Instrum., 38 (5), 18.

    Google Scholar 

  • Drysdale, A. and Gregory, R. (1979) Speech recognition with dynamic range reduction: field tests. Brit. J. Audiol., 13, 1–6.

    Article  CAS  Google Scholar 

  • Egolf, D. (1982) Review of the acoustic feedback literature from a control systems point of view, The Vanderbilt Hearing Aid Report (eds G. Studebaker and F. Bess ), Upper Darby, Pa., 94–103.

    Google Scholar 

  • FTC (1985) Federal Trade Commission Final Report on the Consumer Survey of the Hearing Aid Industry, Chap. 1, Hearing Industries Assn., Executive Summary, HIA, Washington, DC.

    Google Scholar 

  • Freedman, S. (1970) The role of the pinna in speech intelligibility, Final report for contract no. F44620–69-C-0064, Lab. for Res. in Neuropsychology, Inc., Boston, MA.

    Google Scholar 

  • Giolas, T., Owens, E., Lamb, S. and Schubert, E. (1979) Hearing performance inventory. J. Speech Hear. Dis., 44, 169–75.

    CAS  Google Scholar 

  • Goldberg, H. (1982) Signal processors: application to the hearing-impaired. Hear. Aid J., April, 23–7.

    Google Scholar 

  • Graupe, D., Beex, A. and Causey, D. (1980) ARMA filter and method for designing the same, US Patent, 4, 188–667.

    Google Scholar 

  • HIA (1984) Hearing Industries Assn. Market Survey, special membership meeting, St. Louis, MO., October.

    Google Scholar 

  • Iwasaki, S. (1981) Automatic noise suppression in hearing aids. Hear. Aid J., 13, 10–11.

    Google Scholar 

  • Jervall, L., Almqvist, B., Ovegard, A. and Arlinger, S. (1983) Clinical trial of inthe-ear hearing aids. Scand. Audiol., 12, 1.

    Google Scholar 

  • Johansson, B. (1973) The hearing aid as a technical audiological problem. Scand. Audiol., suppl. 3, 55–76.

    Google Scholar 

  • Kates, J. (1986) Signal processing for hearing aids. Hear. Instrum., 37 (2), 19–22.

    Google Scholar 

  • Killion, M. (1980) Earmould options for wideband hearing aids, Industrial Research Products, Inc., Elk Grove Village, Il.

    Google Scholar 

  • Killion, M. and Wilson, D. (1985) Response-modifying earhooks for special fitting problems. Audecibel., 34 (4), 28–30.

    Google Scholar 

  • Krebs, D. (1964) Considerations in the design and use of hearing aids. Audecibel, 13, 90–5.

    Google Scholar 

  • Larsen, S. (1986) MA thesis, Dept. of Communication and Speech Disorders, University of Minnesota.

    Google Scholar 

  • Laurence, R., Moore, B. and Glasberg, B. (1983) A comparison of behind-the-ear high-fidelity linear hearing aids and two-channel compression aids, in the laboratory and in everyday life. Brit. J. Audiol., 17, 31–48.

    Article  CAS  Google Scholar 

  • Licklider, J. and Pollack, I. (1948) Effects of differentiation, integration and infinite peak clipping upon the intelligibility of speech. J. Acoust. Soc. Amer., 20, 42.

    Article  Google Scholar 

  • Linear Technology (1983) Band Limiting Signal Processing Amplifier.

    Google Scholar 

  • Lippmann, R., Braida, L. and Durlach, N. (1981) Study of multichannel amplitude compression and linear amplification for persons with sensori-neural hearing loss. J. Acoust. Soc. Amer., 69, 524–31.

    Article  CAS  Google Scholar 

  • Lynn, G. and Carhart, R. (1963) Influence of attack and release in compression amplification on understanding of speech by hypoacusics. J. Speech Hear. Dis., 28 (2), 124 40.

    Google Scholar 

  • Mangold, S. and Leijon, A. (1979) Programmable hearing aid with multichannel compression. Scand. Audiol., 8, 121–6.

    Article  PubMed  CAS  Google Scholar 

  • Mangold, S. and Leijon, A. (1981) Multichannel compression in a portable programmable hearing aid, Hear. Aid J., 34 (6), 29–32.

    Google Scholar 

  • Mahon, W. (1987) 1987 US hearing-aid sales summary. Hear. J. 40 (12), 9–14.

    Google Scholar 

  • Martin, E. and Picket, J. (1970) Sensorineural hearing loss and upward spread of masking. J. Speech Hear. Res., 13, 426–37.

    PubMed  CAS  Google Scholar 

  • Macrae, J. (1982) Acoustic notch filters for hearing aids. Aust. J. Audiol., 4, 33–9.

    Google Scholar 

  • Moore, B. and Glasberg, B. (1986) A comparison of two-channel and single-channel compression hearing aids. Audiology, 25, 210–26.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, L. (1981) An investigation of the use of behind-the-ear and in-the-ear hearing aids with a geriatric population. Hear. J., 34, 4, 7, 38–41.

    Google Scholar 

  • Nabalek, A. (1982) Temporal distortions and noise considerations in The Vanderbilt Hearing-Aid Report (eds G. Studebaker and F. Bess ), Upper Darby, Pa., 51–9.

    Google Scholar 

  • Nabelek, I. (1983) Performance of hearing-impaired listeners under various types of amplitude compression. J. Acoust. Soc. Amer., 74 (3), 776–91.

    Article  CAS  Google Scholar 

  • Nielsen, B. (1986) Digital hearing aids; where are they? Hear. Instrum., 37 (2), 6, 45.

    Google Scholar 

  • Nielsen, T. (1979) Technical progress and requirements for hearing aids, Oticon Library, Pub. 909 04611/2–79.

    Google Scholar 

  • O’Loughlin, B. (1980) Evaluation of a three channel compression amplification system on hearing-impaired children. Aust. J. Audiol., 2, 1–9.

    Google Scholar 

  • Plomp, R. (1978) Auditory handicap of hearing impairment and the limited benefit of hearing aids. J. Acoust. Soc. Amer., 63, 533–49.

    Article  CAS  Google Scholar 

  • Preves, D. (1982) The potential of computers and signal processing for hearing aids. Hear. Instrum., 33, 15–16.

    Google Scholar 

  • Preves, D. (1983) Signal processing methods for reducing acoustical feedback oscillation in hearing aid fittings. Audecibel, 32, 10–14.

    Google Scholar 

  • Preves, D. (1984a) Hearing aid signal processing for noise and nonsense syllables. Paper presented at 107th meeting of Acoust. Soc. of Amer., Norfolk, Va.

    Google Scholar 

  • Preves, D. (1984b) Acoustic feedback rejection in hearing aid fittings. Paper presented at X VII International Congress of Audiology, Santa Barbara, Ca.

    Google Scholar 

  • Preves, D. (1985) Evaluation of phase compensation for enhancing the signal processing capabilities of hearing aids in situ, PhD thesis, Univ. of Minnesota.

    Google Scholar 

  • Preves, D., Ruzicka, J. and Peterson, E. (1985) Maximizing ITE and ITC fitting potential. Hear. Instrum., 4, 30.

    Google Scholar 

  • Preves, D. and Sigelman, J. (1986) A new signal processor for ITE hearing aid fittings. Hear. Instrum., 37 (10), 52–60.

    Google Scholar 

  • Preves, D. and Sigelman, J. and Le May, P. (1986) A feedback stabilizing circuit for hearing aids. Hear. Instrum., 37 (4), 34–41.

    Google Scholar 

  • Randolph, K., Gierela, V. and Ross, M. (1977) Hearing aid microphone location and speech discrimination: hearing-impaired adults, pres. at the American Speech and Hear. Cony., Chicago, Il.

    Google Scholar 

  • Rutherford, C. (1957) Instantaneous speech compressor. Electronics, 30, 168–9.

    Google Scholar 

  • Scharf, B. (1978) Comparison of normal and impaired hearing II. Frequency analysis, speech perception in Sensorineural hearing impairment and hearing aids (eds Ludvigsen and Barfod), Scand. Audiol., Suppl. 6, 90–3.

    Google Scholar 

  • Schroeder, M. (1961) Improvement of acoustic feedback stability by frequency shifting. J. Acoust. Soc. Amer., 33, 1718–24.

    Google Scholar 

  • Schweitzer, H. and Causey, D. (1977) The relative importance of recovery time in compression hearing aids. Audiology, 16, 61–72.

    PubMed  CAS  Google Scholar 

  • Shaw, E. (1966) Earcanal pressure generated by a free sound field. J. Acoust. Soc. Amer., 39 (3), 465–70.

    Article  CAS  Google Scholar 

  • Sigelman, J. and Preves, D. (1987) Argosy Manhattan Circuit field trials. Hear. J., 40 (4), 24–9.

    Google Scholar 

  • Skadegard, J. (1985) Hearing-aid megatrends. Hear. J., 38, 12, 14–19.

    Google Scholar 

  • Stein, L. and Dempsey-Hart, D. (1984) Listener-assessed intelligibility of a hearing aid self-adaptive noise filter. Ear Hear., 4, 199–204.

    Google Scholar 

  • Studebaker, G.and Zachman, T. (1970) Investigation of the acoustics of earmould vents. J. Acoust. Soc. Amer., 47, 4, 2: 1107–14.

    Article  Google Scholar 

  • Sung, R. and Sung, G. (1982) Compression amplification: its effect on speech intelligibility in noise. Hear. Aid J., 35 (11), 20–4.

    Google Scholar 

  • Surr, R., Schuchman, G. and Montgomery, A. (1978) Factors influencing use of hearing aids. Arch. Otolaryngol., 104, 732–6.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, I. and Ohley, W. (1972) Intelligibility enhancement through spectral weighting. Proc. Conf. on Speech Comm. and Proc., IEEE Cat. 72, CHO 596–7 AE, 360–3.

    Google Scholar 

  • Thomas, I. and Niederjohn, R. (1970) The intelligibility of filtered-clipped speech in noise. J. Audio. Eng. Soc., 18 (3), 299–302.

    Google Scholar 

  • Thomas, I. and Pfannebecker, G. (1974) Effects of spectral weighting of speech in hearing-impaired subjects. J. Audio. Eng. Soc., 22, 690–4.

    Google Scholar 

  • Thomas, I. and Sparks, D. (1971) Discrimination of filtered/clipped speech by hearing-impaired subjects. J. Acoust. Soc. Amer., 49, 1881–7.

    Article  CAS  Google Scholar 

  • Troscianko, T. and Gregory, R. (1984) An assessment of two amplitude-compression hearing aid systems, especially in high ambient noise. Brit. J. of Audiol., 18, 89–96.

    Article  CAS  Google Scholar 

  • Tyler, R., Baker, L. and Armstrong-Bednall, G. (1983) Difficulties experienced by hearing-aid candidates and hearing-aid users. Brit. J. Audiol., 16, 191–201.

    Article  Google Scholar 

  • Van Tasell, D.J. and Yanz, J.L. (1987) Speech recognition thresholding noise: effects of hearing loss, frequency response, and speech materials. J. Speech Hear. Res., 30, 377–86.

    PubMed  Google Scholar 

  • Veit, I. (1981) Ways and means of reducing feedback tendencies in hearing aids. Audiological Acoustics, 20, 176–84.

    Google Scholar 

  • Vargo, S. (1972) Compression amplification and hearing aids. Maico Audiol. Lib. Series, XII, 2.

    Google Scholar 

  • Villchur, E. (1973) Signal processing to improve speech intelligibility in perceptive deafness. J. Acoust. Soc. of Amer., 53 (6), 1646–57.

    Article  CAS  Google Scholar 

  • Walker, G. and Byrne, D. (1982) The effects of multi-band compression and expansion on speech reception. Paper presented at Amer. Speech and Lang. Cony., Detroit, Mi.

    Google Scholar 

  • Walker, G. and Dillon, H. (1982) Compression in hearing aids: an analysis, a review and some recommendations. National Acoust. Lab. report 90, Canberrra Reprographics, Fyshwick, ACT 2609.

    Google Scholar 

  • Wiener, F. and Ross, D. (1946) The pressure distribution in the auditory canal in a progressive sound field. J. Acoust. Soc. Amer., 18 (2), 401–7.

    Article  Google Scholar 

  • Wiener, F. (1947) On the diffraction of a progressive sound wave by the human head. J. Acoust. Soc. Amer., 19 (1), 143–6.

    Article  Google Scholar 

  • Wolinsky, S. (1986) Clinical assessment of a self-adaptive noise filtering system. Hear. J., 39 (10), 29–32.

    Google Scholar 

  • Yanick, P. (1973) Improvement in speech discrimination with compression vs. linear amplification. J. Aud. Res., 13, 333–8.

    Google Scholar 

  • Yanick, P. (1975) Discrimination in the presence of competition with an AVC versus DRC hearing aid. J. Amer. Aud. Soc., 1, 169–72.

    Google Scholar 

  • Yanick, P. (1976) Effects of signal processing on the intelligibility of speech in noise for subjects possessing sensorineural hearing loss. J. Amer. Aud. Soc., 1, 229–38.

    Google Scholar 

  • Yanick, P. (1977) Transient distortion and hearing aid circuits. Hear. Instrum., 28 (1), 8–9.

    Google Scholar 

  • Young, L. and Goodman, J. (1977) The effects of peak clipping on speech intelligibility in the presence of a competing message. Paper 6.10 presented at IEEE cony. on acoustics, speech and signal proc., Hartford, Conn.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Denzil N. Brooks

About this chapter

Cite this chapter

Preves, D. (1989). Future Trends. In: Brooks, D.N. (eds) Adult Aural Rehabilitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3452-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3452-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-33290-6

  • Online ISBN: 978-1-4899-3452-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics