Skip to main content

Pulmonary Physiology of Acute Lung Injury

  • Chapter
ARDS Acute Respiratory Distress in Adults
  • 86 Accesses

Abstract

Regardless of the precipitating cause, the pathophysiology of acute lung injury is relatively uniform and characterized by an abnormal increase in pulmonary endothelial and epithelial permeability [1] (Chapter 4). This results in the accumulation of fluid in the pulmonary interstitial and alveolar spaces, reducing ventilated lung volume and resulting in impaired gas exchange, a large increase in intrapulmonary shunt and reduced lung compliance [21. Other processes including damage to the surfactant system [3] (Chapter 17) and progressive pulmonary fibrosis [4] may further influence gas exchange and lung compliance adversely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brigham, K.L., Woolverton, W., Blake, L. and Staub, N.C. (1974) Increased sheep lung vascular permeability caused by psuedomonas bacteraemia. Journal of Clinical Investigation 54, 792–804.

    Article  PubMed  CAS  Google Scholar 

  2. Lamy, M., Fallat, R.J., Koeniger, E. et al. (1976) Pathologic features and mechanisms of hypoxemia in adult respiratory distress syndrome. American Review of Respiratory Disease, 114, 267–84.

    PubMed  CAS  Google Scholar 

  3. Hallman, M., Spragg, R., Harreil, J.H. et al. (1982) Evidence of lung surfactant abnormality in respiratory failure. Study of broncho-alveolar lavage phospholipids, surface activity, phospholipase activity and plasma myoinositol. Journal of Clinical Investigation, 70, 673–83.

    Article  PubMed  CAS  Google Scholar 

  4. Tomashefski, J.F. (1990) Pulmonary pathology of the adult respiratory distress syndrome. Clinics in Chest Medicine, 11, 593–619.

    PubMed  Google Scholar 

  5. Weibel, E.R. (1973) Morphological basis of alveolar-capillary gas exchange. Physiology Review, 53, 419–95.

    CAS  Google Scholar 

  6. Erdmann, J.A., Vaughan, T.R., Brigham, K.L. et al. (1975) Effect of increased vascular pressure on fluid balance in unanesthetized sheep. Circulation Research, 37, 271–84.

    Article  PubMed  Google Scholar 

  7. Schneeberger, E.E. (1979) Barrier function of intracellular junctions in adult and fetal lungs, in Pulmonary Edema (eds A.P. Fishman and E.M. Renkin), A.erican Physiological Society, Washington, pp. 21–37.

    Google Scholar 

  8. DeFouw, D.O. (1983) Ultrastructural features of alveolar epithelial transport. American Review of Respiratory Disease, 127, S9–13.

    Google Scholar 

  9. Egan, E.A. (1983) Fluid balance in the air-filled space. American Review of Respiratory Disease, 127, 537–9.

    Google Scholar 

  10. Vreim, C.E., Snashall, P.D. and Staub, N.C. (1976) Protein composition of lung fluids in anaesthetised dogs. American Journal of Physiology, 230, 376–9.

    PubMed  CAS  Google Scholar 

  11. Hills, B.A. (1988) The Biology of Surfactant, Cambridge University Press, Cambridge.

    Google Scholar 

  12. Staub, N.C., Nagano, H. and Pearce, M.L. (1967) Pulmonary edema in dogs, especially the sequence of fluid accumulation in lungs. Journal of Applied Physiology, 22, 227–40.

    PubMed  CAS  Google Scholar 

  13. Hunter, D.N., Morgan, C.J. and Evans, T.W. (1990) The use of radionuclide techniques in the assessment of alveolar — capillary permeability on the intensive care unit. Intensive Care Medicine, 16, 363–71.

    Article  PubMed  CAS  Google Scholar 

  14. Woolverton, W.C., Brigham, K.L. and Staub, N.C. (1978) Effect of positive pressure breathing on lung lymph flow and water content in sheep. Circulation Research, 42, 550–7.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson, R.R., Holliday, R.L., Driedger, A.A. et al. (1979) Documentation of pulmonary capillary permeability in the adult respiratory distress syndrome accompanying human sepsis. American Review of Respiratory Disease, 119, 869–77.

    PubMed  CAS  Google Scholar 

  16. Gorin, A.B., Köhler, J. and DeNardo, G. (1980) Noninvasive measurement of pulmonary transvascular protein flux in normal man. Journal of Clinical Investigation, 66, 869–77.

    Article  PubMed  CAS  Google Scholar 

  17. Hunter, D.N., Lawrence, R., Morgan, C.J. and Evans, T.W. (1990) The use of caesium iodide mini scintillation counters for dual isotope pulmonary capillary permeability studies. Nuclear Medicine Communications, 11, 879–88.

    Article  PubMed  CAS  Google Scholar 

  18. Dauber, I.M., Pluss, W.T., VanGrondelle, A. et al. (1985) Specificity and sensitivity of noninvasive measurement of pulmonary vascular protein leak, journal of Applied Physiology, 59, 564–74.

    PubMed  CAS  Google Scholar 

  19. Braude, S., Baudouin, S. and Evans, TW. (1992) Serial assessment of pulmonary microvascular permeability in a patient developing the adult respiratory distress syndrome. European Respiratory Journal, 5, 500–2.

    PubMed  CAS  Google Scholar 

  20. Rocker, G.M., Wiseman, M.S., Pearson, D. and Shale, D.J. (1989) Diagnostic criteria for ARDS: time for reappraisal. Lancet, i, 120–3.

    Article  Google Scholar 

  21. Calandrino, F.S., Anderson, D.J., Mintun, M.A. and Schuster, D.R (1988) Pulmonary vascular permeability during the adult respiratory distress syndrome. A positron emission tomographic study. American Review of Respiratory Disease, 138, 421–8.

    Article  PubMed  Google Scholar 

  22. Matthay, M.A. and Wiener-Kronish, J.P. (1990) Intact epithelial barrier function is critical for resolution of alveolar edema in humans. American Review of Respiratory Disease, 142, 1250–7.

    Article  PubMed  CAS  Google Scholar 

  23. O’Brodovich, H. and Coates, G. (1987) Pulmonary clearance of 99mTc-DTPA: a non-invasive assessment of epithelial integrity. Lung, 165, 1–16.

    Article  PubMed  Google Scholar 

  24. Braude, S., Nolop, K.B., Hughes, J.M.B. et al. (1986) Comparison of lung vascular and epithelial permeability indices in the adult respiratory distress syndrome. American Review of Respiratory Disease, 133, 1002–5.

    PubMed  CAS  Google Scholar 

  25. Nolop, K.B., Maxwell, D.L., Royston, D. and Hughes, J.M.B. (1986) Effect of raised thoracic pressure and volume on 99mTc-DTPA clearance in humans. Journal of Applied Physiology, 60, 1493–7.

    Article  PubMed  CAS  Google Scholar 

  26. Cutillo, A.G. (1987) The clinical assessment of lung water. Chest, 92, 319–25.

    Article  PubMed  CAS  Google Scholar 

  27. Lewis, F.R., Elings, V.B. and Storm, J.A. (1979) Bedside measurement of lung water. Journal of Surgical Research, 27, 250–61.

    Article  PubMed  CAS  Google Scholar 

  28. Mihm, F.G., Feeley, T.W. and Jamieson, S.W. (1981) Comparison of thermal dye indicator dilution with gravimetric lung water measurement in humans. Critical Care Medicine, 9, 256 (abstract).

    Article  Google Scholar 

  29. Carlile, P.V., Lowery, D.D. and Gray, B.A. (1986) Effect of PEEP and type of injury on thermal-dye estimation of pulmonary edema. Journal of Applied Physiology, 60, 22–31.

    PubMed  CAS  Google Scholar 

  30. Fallon, K.D., Drake, R.E., Laine, G.A. and Gabel, J.C. (1985) Effect of cardiac output on extravascular lung water estimates made with the Edwards® lung water computer. Anesthesiology, 62, 505–8.

    Article  PubMed  CAS  Google Scholar 

  31. Overland, E.S., Gupta, R.N., Huchon, G.J. and Murray, J.F (1981) Measurement of pulmonary tissue volume and blood flow in persons with normal and edematous lungs. Journal of Applied Physiology, 51, 1375–83.

    PubMed  CAS  Google Scholar 

  32. Peterson, B.T., Petrini, M.F., Hyde, R.W. and Schreiner, B.F. (1978) Pulmonary tissue volume in dogs during pulmonary edema. Journal of Applied Physiology, 44, 782–95.

    PubMed  CAS  Google Scholar 

  33. Zellner, J.L., Spinale, F.G. and Crawford, F.A. (1990) Bioimpedance: a novel method for the assessment of extravascular lung water. Journal of Surgical Research, 48, 454–59.

    Article  PubMed  CAS  Google Scholar 

  34. Van de Water, J.M., Mount, B.E., Bareca, J.R. et al. (1973) Monitoring the chest with impedance. Chest, 64, 597–603.

    Article  PubMed  Google Scholar 

  35. Aberle, D.R., Hansell, D. and Huang, H.K. (1990) Current status of digital projectional radiography of the chest. Journal of Thoracic Imaging, 5, 10–20.

    Article  PubMed  CAS  Google Scholar 

  36. Sibbald, W.J., Warshawski, F.J., Short, A.K. et al. (1983) Clinical studies of measuring extravascular lung water by the thermal dye technique in critically ill patients. Chest, 83, 725–31.

    Article  PubMed  CAS  Google Scholar 

  37. Sibbald, W.J., Short, A.K., Warshawski, F.J. et al. (1985) Thermal dye measurement of extravascular lung water in critically ill patients. Chest, 5, 585–92.

    Article  Google Scholar 

  38. Mitchell, J.P., Schuller, D., Calandrino, F.S. and Schuster, D.P (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterisation. American Review of Respiratory Disease, 145, 990–8.

    Article  PubMed  CAS  Google Scholar 

  39. Marini, J.J., Rodriguez, R.M. and Lamb, V.J. (1986) Involuntary breathstacking. An alternative method for vital capacity estimation in poorly cooperative subjects. American Review of Respiratory Disease, 134, 694–8.

    PubMed  CAS  Google Scholar 

  40. Mancebo, J. (1991) Functional residual capacity measurement in acute respiratory failure. Methods of measurement in ventilated patients and their clinical utility, in Update in Intensive Care and Emergency Medicine, 13. Pulmonary Function in Mechanically Ventilated Patients (eds S. Benito and A. Net), S.ringer, Berlin, pp. 155–66.

    Chapter  Google Scholar 

  41. Benis, A.M. and Commerton, T.C. (1980) Validation of an oxygen washing method for the measurement of functional residual capacity in the intensive care unit, In Proceedings of 2nd International Congress on Computers in Critical Care and Pulmonary Medicine (eds O. Prakash, A.A. Spence and J.P. Payne), Plenum Press, New York.

    Google Scholar 

  42. East, T.D., Wortelboer, P.J.M., Van Ark, E. et al. (1990) Automated sulfur hexarluoride washout functional residual capacity measurement system for any mode of mechanical ventilation as well as spontaneous respiration. Critical Care Medicine, 18, 84–91.

    Article  PubMed  CAS  Google Scholar 

  43. Weaver, L.J., Pierson, D.J., Kellier, R. et al. (1981) A practical procedure for measuring functional residual capacity during mechanical ventilation with or without PEEP. Critical Care Medicine, 9, 873–7.

    Article  PubMed  CAS  Google Scholar 

  44. Macnaughton, P.D., Morgan, C.J., Denison, D.M. and Evans, T.W. (1993) Simple technique of measurement of lung volume and carbon monoxide transfer in ventilated subjects. European Respiratory Journal, 6, 231–6.

    PubMed  CAS  Google Scholar 

  45. Macnaughton, P.D. and Evans, T.W. (1995) Lung function in ARDS. American Journal of Respiratory and Critical Care Medicine, 150, 770–5.

    Article  Google Scholar 

  46. Gattinoni, L., Pesenti, A. and Torresin, A. (1986) Adult respiratory distress syndrome profiles by computed tomography. Journal of Thoracic Imaging, 1, 25–30.

    Article  PubMed  CAS  Google Scholar 

  47. Gattinoni, L., Pesenti, A. and Bombino, M. (1988) Relationships between lung computed tomographic density, gas exchange and PEEP in acute respiratory failure. Anesthesiology, 60, 824–32.

    Article  Google Scholar 

  48. Dantzker, D.R., Brook, C.J., Dehart, P. et al. (1979) Ventilation perfusion distributions in the adult respiratory distress syndrome. American Review of Respiratory Disease, 120, 1039–52.

    PubMed  CAS  Google Scholar 

  49. Yamaguchi, K., Mori, M., Kawai, A. et al. (1992) Attenuation of hypoxic pulmonary vasoconstriction in acute oleic acid lung injury: significance of vasodilator prostanoids. Advances in Experimental Medical Biology, 316, 299–309.

    Article  CAS  Google Scholar 

  50. Liu, S., Crawley, D.E., Barnes, P.J. and Evans, T.W. (1991) Endothelial-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats. American Review of Respiratory Disease, 143, 32–7.

    Article  PubMed  CAS  Google Scholar 

  51. Zapol, W.M. and Jones, R. (1987) Vascular components of ARDS: clinical pulmonary haemo-dynamics and morphology. American Review of Respiratory Disease, 136, 471–4.

    Article  PubMed  CAS  Google Scholar 

  52. Dueck, R., Wagner, P.D. and West, J.B. (1977) Effects of PEEP on gas exchange in dogs with normal and edematous lungs. Anesthesiology, 47, 359–66.

    Article  PubMed  CAS  Google Scholar 

  53. Rodriguez-Rosin, R., Roca, J. and Barbera, J.A. (1991) Extrapulmonary and intrapulmonary determinants of pulmonary gas exchange, in Update in Intensive Care and Emergency Medicine 15: Ventilatory Failure (eds J.J. Marini and G. Roussos), Springer, Berlin, pp. 18–35.

    Google Scholar 

  54. Gilbert, R. and Keighley, J.F. (1974) The arterial/alveolar oxygen tension ratio. An index of gas exchange applicable to varying inspired oxygen concentrations. American Review of Respiratory Disease, 109, 142–5.

    PubMed  CAS  Google Scholar 

  55. Nunn, J.F. (1987) Distribution of pulmonary ventilation and perfusion, in Applied Respiratory Physiology, 3rd edn (ed. J.F. Nunn), Butter-worth, London, pp. 140–183.

    Google Scholar 

  56. Benator, S.R., Hewlett, A.M. and Nunn, J.F. (1973) The use of iso-shunt lines for the control of oxygen therapy. British Journal of Anaesthesia, 45, 711–8.

    Article  Google Scholar 

  57. Laghi, F., Siegel, J.H., Rivkind, A.I. et al. (1989) Respiratory index /pulmonary shunt relationship. Critical Care Medicine, 17, 1121–8.

    Article  PubMed  CAS  Google Scholar 

  58. Ashbaugh, D.G., Bigelow, D.B., Petty, T.L. and Levine, B.E. (1967) Acute respiratory distress in adults. Lancet, ii, 319–23.

    Article  Google Scholar 

  59. Marini, J. (1990) Lung mechanics in ARDS. Clinics in Chest Medicine, 11, 673–90.

    PubMed  CAS  Google Scholar 

  60. Benito, S. and Lemaire, F. (1990) Pulmonary pressure-volume relationship in acute respiratory distress syndrome in adults. Journal of Critical Care, 5, 27–34.

    Article  Google Scholar 

  61. Anthonisen, N.R. (1986) Tests of mechanical function, in Handbook of Physiology, sect. 3 The Respiratory System, vol 3 The Mechanics of Breathing (eds P.T. Macklem and J. Mead), American Physiological Society, Bethesda, pp. 753–84.

    Google Scholar 

  62. Ottis, A.B., Fenn, W.O. and Rahn, H. (1950) Mechanics of breathing in man. Journal of Applied Physiology, 2, 592–607.

    Google Scholar 

  63. Bone, R.C. (1976) Diagnosis of causes for acute respiratory distress by pressure volume curves. Chest, 70, 740–6.

    Article  PubMed  CAS  Google Scholar 

  64. Rossi, A., Gottfried, S.B., Zocchi, L. et al. (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation. The effect of intrinsic positive end expiratory pressure. American Review of Respiratory Disease, 131, 672–7.

    PubMed  CAS  Google Scholar 

  65. Pepe, P.E. and Marini, J.J. (1982) Occult PEEP in mechanically ventilated patients with airflow obstruction. American Review of Respiratory Disease, 126, 166–70.

    PubMed  CAS  Google Scholar 

  66. Bernasconi, M., Ploysongsang, Y., Gottfried, S.B. et al. (1988) Respiratory compliance and resistance in mechanically ventilated patients with acute respiratory failure. Intensive Care Medicine, 14, 547–53.

    Article  PubMed  CAS  Google Scholar 

  67. Matamis, D., Lemaire, F., Hart, A. et al. (1984) Total respiratory pressure volume curves in the adult respiratory distress syndrome. Chest, 86, 58–66.

    Article  PubMed  CAS  Google Scholar 

  68. Murray, J.F., Mathay, M.A., Luce, J.M. and Flick, M.R. (1988) Pulmonary perspectives. An expanded definition of the adult respiratory distress syndrome. American Review of Respiratory Disease, 138, 720–3.

    Article  PubMed  CAS  Google Scholar 

  69. Gattinoni, L., Pesenti, A. and Caspani, M.L. (1984) Role of static lung compliance in the management of severe ARDS unresponsive to conventional treatment. Intensive Care Medicine, 10, 121–6.

    Article  PubMed  CAS  Google Scholar 

  70. Roupie, E., Dambrosio, M., Mentec, H. et al. (1993) Titration of tidal volume reduction and permissive hypercapnia in adult respiratory distress syndrome. American Review of Respiratory Disease, 147, A351 (abstract).

    Google Scholar 

  71. Ranieri, V.M., Eissa, N.T., Corbeil, C. et al. (1991) Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. American Review of Respiratory Disease, 144, 544–51.

    Article  PubMed  CAS  Google Scholar 

  72. Gattinoni, L., Pesenti, A., Avalli, L. et al. (1987) Pressure volume curve of total respiratory system in acute respiratory failure. American Review of Respiratory Disease, 136, 730–6.

    Article  PubMed  CAS  Google Scholar 

  73. Hickling, K.G., Henderson, S.L. and Jackson, R. (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe ARDS. Intensive Care Medicine, 16, 372–7.

    Article  PubMed  CAS  Google Scholar 

  74. Bates, J.H.T., Rossi, A. and Milic-Emili, J. (1985) Analysis of the behaviour of the respiratory system with constant inspiratory flow. Journal of Applied Physiology, 58, 1840–8.

    PubMed  CAS  Google Scholar 

  75. Wright, P.E. and Bernard, G.R. (1989) The role of airflow resistance in patients with the adult respiratory distress syndrome. American Review of Respiratory Disease, 139, 1169–74.

    Article  PubMed  CAS  Google Scholar 

  76. Hutchinson, A.A., Hinson, J.M., Brigham, K.L. et al. (1983) Effect of endotoxin on airway hyper-responsiveness to aerosol histamine in sheep. Journal of Applied Physiology, 54, 1463–8.

    Google Scholar 

  77. Pesenti, A., Pelosi, P., Rossi N. et al. (1991) The effects of positive end expiratory pressure on respiratory resistance in patients with the adult respiratory distress syndrome and in normal anesthetised subjects. American Review of Respiratory Disease, 144, 101–7.

    Article  PubMed  CAS  Google Scholar 

  78. Hickling, K.G. (1990) Ventilatory management of ARDS: can it affect outcome? Intensive Care Medicine, 16, 219–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Macnaughton, P.D. (1996). Pulmonary Physiology of Acute Lung Injury. In: Evans, T.W., Haslett, C. (eds) ARDS Acute Respiratory Distress in Adults. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3430-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3430-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-56910-4

  • Online ISBN: 978-1-4899-3430-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics