Skip to main content
  • 575 Accesses

Abstract

At one time, the disease beriberi was believed to be caused by a microorganism or toxin. The first indication of a nutritional aetiology was the virtual elimination of beriberi in the Japanese Navy in 1885, brought about by increasing the proportion of meat and vegetables in the staple rice diet. In 1890, Eijkman, a Dutch medical officer stationed in Java, discovered that feeding chickens on polished rice induced a polyneuritis closely resembling human beriberi, which could be prevented by the addition of rice bran to the avian diet. A few years later, Grijns extracted a water-soluble ‘polyneuritis preventive factor’ from rice bran and correctly concluded that beriberi is the result of a dietary lack of an essential nutrient. By 1926, two Dutch chemists, Jansen and Donath, had succeeded in isolating the factor in crystalline form from rice bran extracts. Ten years later, R.R. Williams elucidated the chemical structure of the factor and proposed the name ‘thiamine’ (nowadays spelt thiamin). Thiamin has also been known as aneurin(e), indicative of its role in preventing neurological symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alyabis, A.M. and Simpson, K.L. (1993) Comparison of reverse-phase C-18 open column with the Bio-Rex 70 column in the determination of thiamin. J. Food Comp. Anal., 6, 166–71.

    Article  CAS  Google Scholar 

  • Andrews, J.S. and Nordgren, R. (1941) The application of the thiochrome method to the thiamin analysis of cereals and cereal products. Cereal Chem., 18, 686–95.

    CAS  Google Scholar 

  • Ang, C.Y.W. and Moseley, F.A. (1980) Determination of thiamin and riboflavin in meat and meat products by high-pressure liquid chromatography. J. Agric. Food Chem., 28, 483–6.

    Article  CAS  Google Scholar 

  • AOAC (1990a) Thiamin (vitamin B1) in foods. Fluorometric method. Final action. In AOAC Official Methods of Analysis, 15th edn (ed. K. Helrich ), Association of Official Analytical Chemists, Inc., Arlington, VA, 942. 23.

    Google Scholar 

  • AOAC (1990b) Thiamine (vitamin B1) in grain products. Fluorometric (rapid) method. Final action. In AOAC Official Methods of Analysis, 15th edn (ed. K. Helrich ), Association of Official Analytical Chemists, Inc., Arlington, VA, 953. 17.

    Google Scholar 

  • AOAC (1990c) Thiamine (vitamin B1) in bread. Fluorometric method. Final action 1960. In AOAC Official Methods of Analysis, 15th edn (ed. K. Helrich ), Association of Official Analytical Chemists, Inc., Arlington, VA, 957. 17.

    Google Scholar 

  • Ayi, B.K., Yuhas, D.A., Moffett, K.S. et al. (1985) Liquid chromatographic determination of thiamine in infant formula products by using ultraviolet detection. J. Ass. Off. Analyt. Chem., 68, 1087–92.

    CAS  Google Scholar 

  • Bailey, A.L. and Finglas, P.M. (1990) A normal phase high performance liquid chromatographic method for the determination of thiamin in blood and tissue samples. J. Micronutr. Anal., 7, 147–57.

    CAS  Google Scholar 

  • Breen, K.J., Buttigieg, R., Iossifidis, S. et al. (1985) Jejunal uptake of thiamin hydrochloride in man: influence of alcoholism and alcohol. Am. J. Clin. Nutr., 42, 121–6.

    CAS  Google Scholar 

  • Casirola, D., Ferrari, G., Gastaldi, G. et al. (1988) Transport of thiamine by brush- border membrane vesicles from rat small intestine. J. Physiol., 398, 329–39.

    CAS  Google Scholar 

  • Clydesdale, F.M., Ho, C.-T., Lee, C.Y. et al. (1991) The effects of postharvest treatment and chemical interactions on the bioavailability of ascorbic acid, thiamin, vitamin A, carotenoids, and minerals. Crit. Rev. Food Sci. Nutr., 30, 599–638.

    Article  CAS  Google Scholar 

  • Cumming, F., Briggs, M. and Briggs, M. (1981) Clinical toxicology of vitamin supplements. In Vitamins in Human Biology and Medicine (ed. M.H. Briggs ), CRC Press, Inc., Boca Raton, Florida, pp. 187–243.

    Google Scholar 

  • Defibaugh, P.W. (1987) Evaluation of selected enzymes for thiamine determination. J. Ass. Off. Analyt. Chem., 70, 514–17.

    CAS  Google Scholar 

  • Defibaugh, P.W., Smith, J.S. and Weeks, C.E. (1977) Assay of thiamin in foods using manual and semiautomated fluorometric and microbiological methods. J. Ass. Off Analyt. Chem., 60, 522–7.

    CAS  Google Scholar 

  • Deibel, R.H., Evans, J.B. and Niven, C.F. (1957) Microbiological assay for thiamin using Lactobacillus viridescens. J. Bact., 74, 818–21.

    CAS  Google Scholar 

  • Department of Health (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report on Health and Social Subjects, No. 41, HM Stationery Office, London.

    Google Scholar 

  • Dwivedi, B.K. and Arnold, R.G. (1973) Chemistry of thiamine degradation in food products and model system: a review. J. Agric. Food Chem., 21, 54–60.

    Article  CAS  Google Scholar 

  • Edwards, C.H., Booker, L.K., Rumph, C.H. et al. (1971) Utilization of wheat by adult man: excretion of vitamins and minerals. Am. J. Clin. Nutr., 24, 547–55.

    CAS  Google Scholar 

  • Evans, W.C. (1975) Thiaminases and their effects on animals. Vitamins Horm., 33, 467–504.

    Article  CAS  Google Scholar 

  • Fellman, J.K., Artz, W.E., Tassinari, P.D. et al. (1982) Simultaneous determination of thiamin and riboflavin in selected foods by high-performance liquid chromatography. J. Food Sci., 47, 2048–50, 2067.

    Article  Google Scholar 

  • Ferrari, G., Patrini, C. and Rindi, G. (1982) Intestinal thiamin transport in rats. Thiamin and thiamin phosphoester content in the tissue and serosal fluid of everted jejunal sacs. Pfligers Arch., 393, 37–41.

    Article  CAS  Google Scholar 

  • Ferrari, G., Ventura, U. and Rindi, G. (1971) The Nat-dependence of thiamin intestinal transport in vitro. Life. Sci., 10, 67–75.

    Article  CAS  Google Scholar 

  • Girija, V., Sharada, D. and Pushpamma, P. (1982) Bioavailability of thiamine, riboflavin and niacin from commonly consumed green leafy vegetables in the rural areas of Andhra Pradesh in India. Int. J. Vitam., Nutr. Res., 52, 9–13.

    CAS  Google Scholar 

  • Gregory, J.F. III and Kirk, J.R. (1978) Comparison of chemical and biological methods for determination of thiamin in foods. J. Agric. Food Chem., 26, 338–41.

    Article  CAS  Google Scholar 

  • Gubler, C.J. (1991) Thiamin. In Handbook of Vitamins, 2nd edn (ed. L.J. Machlin ), Marcel Dekker, Inc., New York, pp. 233–81.

    Google Scholar 

  • Hartman, A.M. and Dryden, L.P. (1974) Vitamins in milk and milk products. In Fundamentals of Dairy Chemistry, 2nd edn (eds B.H. Webb, A.H. Johnson and J.A. Alford ), AVI Publishing Co., Inc., Westport, CT, pp. 325–441.

    Google Scholar 

  • Hilker, D.M. and Somogyi, J.C. (1982) Antithiamins of plant origin: their chemical nature and mode of action. Ann. NY Acad. Sci., 378, 137–45.

    Article  CAS  Google Scholar 

  • Hoffer, A., Alcock, A.W. and Geddes, W.F. (1943) A rapid method for the determination of thiamine in wheat and flour. Cereal Chem., 20, 717–29.

    CAS  Google Scholar 

  • Holland, B., Welch, A.A., Unwin, I.D. et al. (1991) McCance and Widdowson’s The Composition of Foods, 5th edn, Royal Society of Chemistry and Ministry of Agriculture, Fisheries and Food.

    Google Scholar 

  • Hoyumpa, A.M. Jr (1986) Mechanisms of vitamin deficiencies in alcoholism. Alcoholism Clin. Exp. Res., 10, 573–81.

    Article  CAS  Google Scholar 

  • Hoyumpa, A.M. Jr, Middleton, H.M., Wilson, F.A. and Schenker, S. (1975) Thiamine transport across the rat intestine. 1. Normal characteristics. Gastroenterology, 68, 1218–27.

    CAS  Google Scholar 

  • Hoyumpa, A.M. Jr, Nichols, S., Schenker, S. and Wilson, F.A. (1976) Thiamine transport in thiamine-deficient rats: role of the unstirred water layer. Biochim. Biophys. Acta, 436, 438–47.

    Article  CAS  Google Scholar 

  • Ishii, K., Sarai, K., Sanemori, H. and Kawasaki, T. (1979) Concentrations of thiamine and its phosphate esters in rat tissues determined by high-performance liquid chromatography. J. Nutr. Sci. Vitaminol., 25, 517–23.

    Article  CAS  Google Scholar 

  • Kamman, J.F., Labuza, T.P. and Warthesen, J.J. (1980) Thiamin and riboflavin analysis by high performance liquid chromatography. J. Food Sci., 45, 1497–9, 1504.

    Article  Google Scholar 

  • Kirk, J.R. (1974) Automated methods for the analysis of thiamine in milk, with application to other selected foods. J. Ass. Off Analyt. Chem., 57, 1081–4.

    CAS  Google Scholar 

  • Kirk, J.R. (1977) Automated analysis of thiamine, ascorbic acid, and vitamin A. J. Ass. Off. Analyt. Chem., 60, 1234–7.

    CAS  Google Scholar 

  • Komai, T., Kawai, K. and Shindo, H. (1974) Active transport of thiamine from rat small intestine. J. Nutr. Sci. Vitaminol., 20, 163–77.

    Article  CAS  Google Scholar 

  • Leevy, C.H. and Baker, H. (1968) Vitamins and alcoholism. Introduction. Am. J. Clin. Nutr., 21, 1325–8.

    CAS  Google Scholar 

  • Lumeng, L., Edmondson, J.W., Schenker, S. and Li, T.-K. (1979) Transport and metabolism of thiamin in isolated rat hepatocytes. J. Biol. Chem., 254, 7265–8.

    CAS  Google Scholar 

  • McCormick, D.B. (1988) Thiamin. In Modern Nutrition in Health and Disease, 7th edn (eds M.E. Shils and V.R. Young ), Lea & Febiger, Philadelphia, pp. 355–61.

    Google Scholar 

  • McRoberts, L.H. (1954) Report on the determination of thiamin in enriched flour. Comparison of fluorometric methods. J. Ass. Off Agric. Chem., 37, 757–70.

    CAS  Google Scholar 

  • McRoberts, L.H. (1957) Report on thiamine in enriched cereal and bakery products. J. Ass. Off Agric. Chem., 40, 843–53.

    CAS  Google Scholar 

  • Murata, K. (1982) Actions of two types of thiaminases on thiamin and its analogues. Ann. NY Acad. Sci., 378, 146–56.

    Article  CAS  Google Scholar 

  • National Research Council (1989) Water-soluble vitamins. In Recommended Dietary Allowances, 10th edn, National Academy Press, Washington, DC, pp. 115–73.

    Google Scholar 

  • Nicolas, E.C. and Pfender, K.A. (1990) Fast and simple liquid chromatographic determination of nonphosphorylated thiamine in infant formula, milk, and other foods. J. Ass. Off. Analyt. Chem., 73, 792–8.

    CAS  Google Scholar 

  • Obermeyer, H.G., Fulmer, W.C. and Young, J.M. (1944) Cocarboxylase hydrolysis by a wheat phosphatase. J. Biol. Chem., 154, 557–9.

    CAS  Google Scholar 

  • Ohta, H., Baba, T., Suzuki, Y. and Okada, E. (1984) High-performance liquid chromatographic analysis of thiamine in rice flour with fluorimetric post-column derivatization. J. Chromat., 284, 281–4.

    Article  CAS  Google Scholar 

  • Ohta, H., Maeda, M., Nogata, Y. et al. (1993) A simple determination of thiamine in rice (Oryza sativa L.) by high-performance liquid chromatography with post-column derivatization. J. Liquid Chromat.,16 2617–29.

    Google Scholar 

  • Omaye, S.T., Chow, F.I. and Betschart, A.A. (1982) In vitro interaction of 1–14C- ascorbic acid and 2–14C-thiamin with dietary fiber. Cereal Chem., 59, 440–3.

    CAS  Google Scholar 

  • Panijpan, B. and Ratanaubolchai, K. (1980) Kinetics of thiamine-polyphenol interactions and mechanism of thiamine disulphide formation. Int. J. Vitam. Nutr. Res., 50, 247–53.

    CAS  Google Scholar 

  • Patrini, C., Cusaro, G., Ferrari, G. and Rindi, G. (1981) Thiamine transport by rat small intestine ‘in vitro’: influence of endogenous thiamine content of jejunal tissue. Acta Vitaminol. Enzymol., 3, 17–26.

    CAS  Google Scholar 

  • Pelletier, O. and Madère, R. (1975) Comparison of automated and manual procedures for determining thiamine and riboflavin in foods. J. Food Sci., 40, 374–9.

    Article  CAS  Google Scholar 

  • Pelletier, O. and Madère, R. (1977) Automated determination of thiamin and riboflavin in various foods. J. Ass. Off Analyt. Chem., 60, 140–6.

    CAS  Google Scholar 

  • Ranhotra, G., Gelroth, J., Novak, F. and Bohannon, F. (1985) Bioavailability for rats of thiamin in whole wheat and thiamin-restored white bread. J. Nutr., 115, 601–6.

    CAS  Google Scholar 

  • Ribbron, W.M., Stevenson, K.E. and Kirk, J.R. (1977) Comparison of semiautomated and manual methods for the determination of thiamine in baby cereals and infant and dietary formulas. J. Ass. Off. Analyt. Chem., 60, 737–8.

    CAS  Google Scholar 

  • Rindi, G. (1984) Thiamin absorption by small intestine. Acta Vitaminol. Enzymol., 6, 47–55.

    CAS  Google Scholar 

  • Rindi, G. and Ferrari, G. (1977) Thiamine transport by human intestine in vitro. Experientia, 33, 211–13.

    Article  CAS  Google Scholar 

  • Rindi, G. and Ventura, U. (1967) Phosphorylation and uphill intestinal transport of thiamine, in vitro. Experientia, 23, 175–6.

    Article  CAS  Google Scholar 

  • Rose, R.C. (1988) Transport of ascorbic acid and other water-soluble vitamins. Biochim. Biophys. Acta, 947, 335–66.

    Article  CAS  Google Scholar 

  • Rose, R.C. (1991) Intestinal transport of water-soluble vitamins. In Handbook of Physiology, Section 6: The Gastrointestinal System, Vol. 4. Intestinal Absorption and Secretion (eds M. Field and R.A. Frizzell ), American Physiological Society, Bethesda, MD, pp. 421–35.

    Google Scholar 

  • Roy, R.B. and Conetta, A. (1976) Automated analysis of water-soluble vitamins in food. Food Technol., 30(10), 94, 95, 98, 100, 103, 104.

    Google Scholar 

  • Rungruangsak, K., Tosukhowong, P., Panijpan, B. and Vimokesant, S.L. (1977) Chemical interactions between thiamin and tannic acid. I. Kinetics, oxygen dependence and inhibition by ascorbic acid. Am. J. Clin. Nutr., 30, 1680–5.

    CAS  Google Scholar 

  • Sauberlich, H.E. (1984) Newer laboratory methods for assessing nutriture of selected B-complex vitamins. Ann. Rev. Nutr., 4, 377–407.

    Article  CAS  Google Scholar 

  • Schaller, K. and Höller, H. (1976) Thiamine absorption in the rat. IV. Effects of caffeic acid (3,4-dihydroxycinnamic acid) upon absorption and active transport of thiamine. Int. J. Vitam. Nutr. Res., 46, 143–8.

    CAS  Google Scholar 

  • Scholes, P.M. (1960) The microbiological assay of thiamine. Two methods modified for use with small amounts of test material. Analyst, Lond., 85, 883–9.

    CAS  Google Scholar 

  • Sklan, D. and Trostler, N. (1977) Site and extent of thiamin absorption in the rat. J. Nutr., 107, 353–6.

    CAS  Google Scholar 

  • Soliman, A.-G.M. (1981) Comparison of manual and benzenesulphonyl chloridesemiautomated thiochrome methods for determination of thiamine in foods. J. Ass. Off Analyt. Chem., 64, 616–22.

    CAS  Google Scholar 

  • Tanphaichitr, V. (1994) Thiamin. In Modern Nutrition in Health and Disease, 8th edn, Vol. 1 (eds M.E. Shils, J.A. Olson and M. Shike ), Lea & Febiger, Philadelphia, pp. 359–65.

    Google Scholar 

  • Taungbodhitham, A.K. (1995) Thiamin content and activity of antithiamin factor in vegetables of southern Thailand. Food Chem., 52, 285–8.

    Article  CAS  Google Scholar 

  • Vidal-Valverde, C. and Reche, A. (1990) An improved high performance liquid chromatographic method for thiamin analysis in foods. Z. Lebensmittelunters u.-Forsch., 191, 313–18.

    Article  CAS  Google Scholar 

  • Vimokesant, S., Kunjara, S., Rungruangsak, K. et al. (1982) Beriberi caused by antithiamin factors in food and its prevention. Ann. NY Acad. Sci., 378, 123–36.

    Article  CAS  Google Scholar 

  • Warnick, K.P., Zaehringer, M.V., Bring, S.V. and Woods, E. (1956) Physiological availability of thiamine from potatoes and from brown rice. J. Nutr., 59, 121–33.

    CAS  Google Scholar 

  • Yang, P.-F. and Pratt, D.E. (1984) Antithiamin activity of polyphenolic antioxidants. J. Food Sci., 49, 489–92.

    Article  CAS  Google Scholar 

  • Yoshioka, K. (1984) Some properties of the thiamine uptake system in isolated rat hepatocytes. Biochim. Biophys. Acta, 778, 201–9.

    Article  CAS  Google Scholar 

  • Yu, B.H. and Kies, C. (1993) Niacin, thiamin, and pantothenic acid bioavailability to humans from maize bran as affected by milling and particle size. Plant Foods Human Nutr., 43, 87–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 G.F.M. Ball

About this chapter

Cite this chapter

Ball, G.F.M. (1998). Thiamin (vitamin B1). In: Bioavailability and Analysis of Vitamins in Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3414-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3414-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-78090-5

  • Online ISBN: 978-1-4899-3414-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics