Skip to main content

Practical instrumentation

  • Chapter
Clinical Nuclear Medicine
  • 101 Accesses

Abstract

The radiation detector used in almost all nuclear medicine equipment is the scintillation crystal coupled to one or more photomultiplier tubes (PMTs). When ionizing radiation interacts with a scintillator, light is emitted in a short flash or pulse, the magnitude of which is proportional to the amount of energy deposited in the scintillator by the radiation. By using a material of high atomic number, γ-rays can be detected by the light pulses due to electrons secondary to the photoelectric, Compton scattering and pair production processes; for the γ-energies encountered in nuclear medicine, the pair production process may be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anger, H. O. (1958) Scintillation camera. Rev. Sci. Instr., 29, 27–33.

    Article  CAS  Google Scholar 

  • Bateman, J. E. and Connolly, J. F. (1978) A multiwire proportional gamma camera for imaging Tc-99m radionuclide distributions. Phys. Med. Biol., 23, 445.

    Article  Google Scholar 

  • Bender, M. A. and Blau, M. (1963) The autofluoroscope. Nucleonics, 21, 52–59.

    Google Scholar 

  • Berger, H. J., Davies, R. A., Batsford, W. P. et al. (1981) Beat-to-beat left ventricular performance assessed from the equilibrium cardiac blood pool using a computerised nuclear probe. Circulation, 63, 133–42.

    Article  PubMed  CAS  Google Scholar 

  • Boddy, K., Elliott, A. T., Robertson, I. et al. (1975) A high sensitivity dual-detector shadow-shield whole-body counter with an invariant response for total body in vivo neutron activation analysis. Phys. Med. Biol., 20, 296–304.

    Article  PubMed  CAS  Google Scholar 

  • Bracewell, R. N. (1956) Strip integration in radio astronomy. Aust. J. Phys., 9, 198–217.

    Article  Google Scholar 

  • Brown, N. J. G., Budd, T. and Britton, K. E. (1976) in Proceedings of the 13th Internationale Jahrestagung der Gesellschaft fur Nuclearmedizin EV, Copenhagen.

    Google Scholar 

  • Budinger, T. F. and Gullberg, G. T. (1974) Three dimensional reconstruction in nuclear medicine by iterative least-squares and Fourier transform techniques. IEEE Trans. Nucl. Sci., NS-21, 2–20.

    Article  Google Scholar 

  • Campbell, F. W. (1976) in Medical Images: Formation, Perception and Measurement (ed. G. A. Hay), John Wright, Bristol.

    Google Scholar 

  • Chang, L. T. (1978) A method for attenuation correction in radionuclide computed tomography. IEE Trans. Nucl. Sci, NS-25, 638–43.

    Article  Google Scholar 

  • Cohn, S. H., Dombrowski, S., Pate, H. R. and Robertson, J. S. (1969) A whole-body counter with invariant response to radionuclide distribution and body size. Phys. Med. Biol., 14, 645.

    Article  PubMed  CAS  Google Scholar 

  • Corfield, J. R. (1976) in Proceedings of the 13th International Jahrestagung der Gesellschaft fur Nuclearmedizin EV, Copenhagen.

    Google Scholar 

  • DHSS (1980) Performance Assessment of Gamma Cameras — Part I, Report STB/11/80, Department of Health and Social Security, London.

    Google Scholar 

  • DHSS (1982) Performance Assessment of Gamma Cameras — Part II, Report STB/13/82, Department of Health and Social Security, London.

    Google Scholar 

  • DHSS (1985) Performance Assessment of Gamma Cameras — Part III, Report STB6D/85/6, Department of Health and Social Security, London.

    Google Scholar 

  • DHSS (1986) Performance Assessment of Gamma Cameras — Part IV, Report STB/86/9, Department of Health and Social Security, London.

    Google Scholar 

  • Diffey, B. L., Hall, F. M. and Corfield, J. R. (1976) The Tc-DTPA dynamic renal scan with deconvolution analysis. J. Nucl. Med., 17, 352–5.

    PubMed  CAS  Google Scholar 

  • Elliott, A. T., Langford, R. M., Corbishley, T. P. et al. (1979) Peroperative nuclear medicine: the portable gamma camera on-line to a computer as a diagnostic service to the surgeon. Nuklearmedizin, 17, 78–80.

    Google Scholar 

  • Ewins, J. H., Armantrout, G. A., Camp, D. C. et al. (1977) in Medical Radionuclide Imaging, Vol. 1, IAEA, Vienna, pp. 149–6.

    Google Scholar 

  • Garcia, E. V., Van Train, K., Maddahi, J. et al. (1985) Quantification of rotational thallium-201 myocardial tomography. J. Nucl. Med., 26, 17–26.

    PubMed  CAS  Google Scholar 

  • Goodenough, D. J., Rossmann, K. and Lusted, L. E. (1974) Radiographic applications of receiver operating characteristic (ROC) curves. Radiology, 110, 89–95.

    PubMed  CAS  Google Scholar 

  • Griffin, D. W., Donovan, I. A., Harding, L. K. and White, C. M. (1979) Liquid gastric emptying in four minutes, 7th Annual Meeting, British Nuclear Medicine Society, London.

    Google Scholar 

  • Gustafsson, T. R. and Pizer, S. M. (1975) in Information Processing in Scintigraphy, CEA, Orsay, pp. 56–64.

    Google Scholar 

  • Harby, K. (1988) Clinical PET: is it time to take the plunge? J. Nucl. Med., 29, 1751–7.

    PubMed  CAS  Google Scholar 

  • Hart, G. C, Bunday, B. and Kiri, V. (1987) The random walk function in the analysis of time-activity curves from dynamic radionuclide studies. Nucl. Med. Commun., 8, 189–97.

    Article  PubMed  CAS  Google Scholar 

  • HMSO (1985) The Ionising Radiations Regulations 1985, Statutory Instrument 1333, HMSO, London.

    Google Scholar 

  • HMSO (1985) Approved Code of Practice; The Protection of Persons Against Ionising Radiation Arising from Any Work Activity, HMSO, London.

    Google Scholar 

  • HMSO (1988) Guidance Notes for the Protection of Persons Against Ionising Radiations Arising from Medical and Dental Use, HMSO, London.

    Google Scholar 

  • HMSO (1988) The Ionising Radiation (Protection of Persons Undergoing Medical Examination or Treatment) Regulations, Statutory Instrument 778, HMSO, London.

    Google Scholar 

  • Hospital Physicists’ Association (1978) The Theory, Specification and Testing of Anger Type Gamma Cameras, HP A, London.

    Google Scholar 

  • Hospital Physicists’ Association (1983) Quality Control of Nuclear Medicine Instrumentation, HPA, London.

    Google Scholar 

  • Houston, A. S. (1976) An attempt to optimise two zero summation filters for use in radioisotope scintigraphy. Int. J. Nucl. Med. Biol., 3, 111–14.

    Article  PubMed  CAS  Google Scholar 

  • Houston, A. S. and MacLeod, M. A. (1977) An inter-comparison of computer assisted data processing and display methods in radioisotope scintigraphy using mathematical tumours. Phys. Med. Biol., 22, 1097–114.

    Article  PubMed  CAS  Google Scholar 

  • Houston, A. S., MacLeod, M. A. and Sampson, W. (1979) Principal components analysis as an aid to classification of renal dynamic studies. Eur. J. Nucl. Med., 4, 295–9.

    Article  PubMed  CAS  Google Scholar 

  • International Electrotechnical Commission (1984) Characteristics and test conditions of radionuclide imaging devices-IEC789. IEC, Geneva.

    Google Scholar 

  • Jarritt, P. H., Ell, P. J., Myers, M. J., Brown, N. J. G. and Deacon, J. M. (1979) A new transverse-section brain imager for single-photon gamma emitters. J. Nucl. Med., 20, 319–27.

    PubMed  CAS  Google Scholar 

  • Kuhl, D. E. and Edwards, R. Q. (1963) Image separation radioisotope scanning. Radiology, 80, 653–62.

    Google Scholar 

  • Lacy, J. L., LeBlanc, A. D., Babich, J. W. et al. (1984) A gamma camera for medical applications, using a mutiwire proportional counter. J. Nucl. Med., 25, 1003–12.

    PubMed  CAS  Google Scholar 

  • Loc’h, C., Maziere, B. and Comar, D. (1980) A new generator for ionic gallium-68. J. Nucl. Med., 21, 171–3.

    PubMed  Google Scholar 

  • Metz, C. E. and Kronman, H. B. (1980) in Information Processing in Medical Imaging, Les Colloques de 1TNSERM, 88, pp. 647–658.

    Google Scholar 

  • Metz, C. E., Wang, P. and Kronman, H. B. (1984) in Information Processing in Medical Imaging (ed. F. Deconinck), Martinus Nijhoff, The Hague.

    Google Scholar 

  • Milan, J. and Taylor, K. J. W. (1976) The application of the temperature scale to ultrasonic imaging. J. Clin. Ultrasound, 3, 171–3.

    Article  Google Scholar 

  • Muehllehner, G. (1979) Effect of crystal thickness on scintillation camera performance. J. Nucl. Med., 20, 992–3.

    PubMed  CAS  Google Scholar 

  • Muehllehner, G., Buchin, M. P. and Dudek, J. H. (1976) Performance parameters of a positron imaging camera. IEEE Trans. Nucl. Sci., 23, 528–37.

    Article  Google Scholar 

  • Muehllehner, G., Colsher, J. G. and Stoub, E. W. (1980) Correction for field nonuniformity in scintillation cameras through removal of spatial distortion. J. Nucl. Med., 21, 771–76.

    PubMed  CAS  Google Scholar 

  • Mullani, N. A., Gaeta, J. and Yerian, K. (1984) Dynamic imaging with high-resolution time-of-flight PET camera — TOFPET I. IEEE Trans. Nucl. Sci., S-31, 609–13.

    Article  Google Scholar 

  • National Electrical Manufacturers’ Association (1986) Performance measurements of scintillation cameras, Publication NU1–1986, NEMA, Washington.

    Google Scholar 

  • Neill, G. D. S. and Hutchinson, F. (1971) Computer detection and display of focal lesions on scintiscans. Br. J. Radiol, 44, 962–9.

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf, W. H. (1961) Isolated flying spot detection of radiodensity discontinuities: displaying the internal structural pattern of a complex object. IRE Trans. Bio-Med. Elect., 8, 68–72.

    Article  Google Scholar 

  • Pavel, D., Byron, E., Swiryn, S. et al. (1980) in Medical Radionuclide Imaging, IAEA, Vienna, pp. 253–9.

    Google Scholar 

  • Royal, H. D., Brown, P. H. and Claunch, B. C. (1979) Effects of a reduction in crystal thickness on Anger-camera performance. J. Nucl. Med., 20, 977–80.

    PubMed  CAS  Google Scholar 

  • Schmidlin, P. (1979) Quantitative evaluation and imaging of functions using pattern recognition methods. Phys. Med. Biol., 24, 385–95.

    Article  PubMed  CAS  Google Scholar 

  • Starr, S. J., Metz, C.E., Lusted, L. B. and Goodenough, D.J. (1975) Visual detection and localisation of radiographic images. Radiology, 116, 533–8.

    PubMed  CAS  Google Scholar 

  • Strashun, A., Horowitz, S. F., Goldsmith, S. J. et al. (1981) Noninvasive detection of left ventricular dysfunction with a portable electrocardiographic gated scintillation probe device. Am. J. Cardiol, 47, 61–17.

    Article  Google Scholar 

  • Tauxe, W. N., Soussaline, F., Todd-Pokropek, A E., et al. (1982) Determination of organ volume by single-photon emission tomography. J. Nucl. Med., 23, 984–7.

    PubMed  CAS  Google Scholar 

  • Ter-Pogossian, M. M., Phelps, M. E., Hoffman, E. J. and Mullani, N. A. (1975) A positron emission transaxial tomograph for nuclear medicine imaging (PETT). Radiology, 114, 89–98.

    PubMed  CAS  Google Scholar 

  • Todd-Pokropek, A. E. (1983) in Quality Control of Nuclear Medicine Instrumentation, HPA, London, pp. 54–73.

    Google Scholar 

  • Todd-Pokropek, A. E. and Jarritt, P. H. (1982) in Computed Emission Tomography (eds P. J. Ell and B. L. Holman), Oxford University Press, London, pp. 361–89.

    Google Scholar 

  • Todd-Pokropek, A. E. and Pizer, S. M. (1977) in Medical Radionuclide Imaging, Vol. 1, IAEA, Vienna, pp. 505–38.

    Google Scholar 

  • Todd-Pokropek, A. E., Erbsmann, F. and Soussaline, F. (1977) in Medical Radionuclide Imaging, Vol. 1, IAEA, Vienna, pp. 67–82.

    Google Scholar 

  • Underwood, S. R., Walton, S., Laming, P. J. et al. (1985) Left ventricular volume and ejection fraction determined by gated blood pool emission tomography. Br. Heart J., 53, 216–22.

    Article  PubMed  CAS  Google Scholar 

  • US Department of Health, Education and Welfare (1976) Workshop Manual for Quality Control of Scintillation Cameras in Nuclear Medicine, USDHEW, Washington.

    Google Scholar 

  • Wagner, H. N., Wake, R., Nickoloff, E. and Natarajan, T. K. (1976). The nuclear stethoscope: A simple device for generation of left ventricular volume curves. Am. J.Cardiol, 38,747–50.

    Article  PubMed  CAS  Google Scholar 

  • Wicks, R. and Blau, M. (1979) Effect of spatial distortion on Anger camera field-uniformity correction. J. Nucl. Med., 20, 252–4.

    PubMed  CAS  Google Scholar 

  • Whitehead, F. R. (1978) Minimum detectable gray-scale differences in nuclear medicine images. J. Nucl. Med., 19, 87–93.

    PubMed  CAS  Google Scholar 

  • World Health Organization (1982) Quality Assurance in Nuclear Medicine, WHO, Geneva.

    Google Scholar 

  • Yano, Y., Cahoon, J. L. and Budinger, T. F. (1981) A precision flow-controlled Rb-82 generator for bolus or constant infusion studies of the heart and brain. J. Nucl. Med., 22, 1006–10.

    PubMed  CAS  Google Scholar 

Bibliography

  • Computed Emission Tomography (1982) (eds P. J. Ell and B. L. Holman), Oxford University Press, Oxford.

    Google Scholar 

  • Tracer techniques and nuclear medicine (1986), in Mathematical Methods in Medicine, Part1 (editors D. Ingram and R. Bloch), John Wiley, Chichester.

    Google Scholar 

  • Imaging (1986), in Mathematical Methods in Medicine, Part2 (eds D. Ingram and R. Bloch), John Wiley, Chichester.

    Google Scholar 

  • The Physics of Medical Imaging (1988) (ed. S. Webb), Adam Hilger, Bristol.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Elliott, A.T. (1991). Practical instrumentation. In: Maisey, M.N., Britton, K.E., Gilday, D.L. (eds) Clinical Nuclear Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3358-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3358-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-27900-3

  • Online ISBN: 978-1-4899-3358-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics