Skip to main content

Abstract

Pre-processing is a common name for operations with images at the lowest level of abstraction — both input and output are intensity images. These iconic images are of the same kind as the original data captured by the sensor, with an intensity image usually represented by a matrix of image function values (brightnesses). The aim of pre-processing is an improvement of the image data that suppresses unwilling distortions or enhances some image features important for further processing, although geometric transformations of images (e.g. rotation, scaling, translation) are classified among pre-processing methods here since similar techniques are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H C Andrews, and B R Hunt: Digital Image Restoration. Prentice-Hall, Englewood Cliffs, NJ, 1977.

    Google Scholar 

  2. D H Ballard, and C M Brown: Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1982.

    Google Scholar 

  3. R H T Bates, and M J McDonnell: Image Restoration and Reconstruction. Clarendon Press, Oxford, England, 1986.

    Google Scholar 

  4. A C Borik, T S Huang, and D C Munson: A generalization of median filtering using combination of order statistics. IEEE Proceedings, 71 (31): 1342–1350, 1983.

    Google Scholar 

  5. M Born, and E Wolf: Principles of Optics. Pergamon Press, New York, 1969.

    Google Scholar 

  6. M Brady: Representing shape. In M Brady, L A Gerhardt, and H F Davidson, editors, Robotics and Artificial Intelligence, pages 279–300. Springer + NATO, Berlin, 1984.

    Chapter  Google Scholar 

  7. J F Canny: Finding edges and lines in images. Technical Report AI-TR-720, MIT, Artificial Intelligence Lab., Cambridge, Ma, 1983.

    Google Scholar 

  8. J F Canny: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8 (6): 679–698, 1986.

    Article  Google Scholar 

  9. Technical Report A 12–346–811, Geodetic and Carthographic Institute, Prague, Czechoslovakia, 1987.

    Google Scholar 

  10. R Gordon, and R M Rangayyan: Feature enhancement of film mammograms using fixed and adaptive neighborhoods. Applied Optics, 23: 560–564, 1984.

    Article  Google Scholar 

  11. T S Huang, editor. Image Sequence Processing and Dynamic Scene Analysis. Springer Verlag, Berlin, 1983.

    Google Scholar 

  12. A Huertas, and G Medion: Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8: 651–664, 1986.

    Article  Google Scholar 

  13. R E Hufnagel, and N R Stanley: Modulation transfer function associated with image transmission through turbulent media. Journal of the Optical Society of America, 54: 52–61, 1964.

    Article  Google Scholar 

  14. R Hummel, and R Moniot: Reconstructions from zero crossings in scale space. IEEE Transactions on Acoustics, Speech and Signal Processing, 37 (12): 2111–2130, 1989.

    Article  Google Scholar 

  15. A K Jain: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs, NJ, 1989.

    MATH  Google Scholar 

  16. D G Lowe: Organization of smooth image curves at multiple scales. International Journal of Computer Vision, 1: 119–130, 1989.

    Article  Google Scholar 

  17. D Marr: Vision - A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman and Co., San Francisco, 1982.

    Google Scholar 

  18. D Marr, and E Hildreth: Theory of edge detection. Proceedings of the Royal Society, B 207: 187–217, 1980.

    Article  Google Scholar 

  19. D Marr, and E Hildreth: Theory of edge detection. In R Kasturi and R C Jain, editors, Computer Vision, pages 77–107. IEEE, Los Alamitos, Ca, 1991.

    Google Scholar 

  20. M J McDonnell: Box filtering techniques. Computer Graphics and Image Processing, 17 (3): 65–70, 1981.

    Article  Google Scholar 

  21. R Mehrotra, and S Nichani: Corner detection. Pattern Recognition Letters, 23 (11): 1223–1233, 1990.

    Article  Google Scholar 

  22. Moik 80] J G Moik: Digital Processing of Remotely Sensed Images. NASA SP-431, Washington DC, 1980.

    Google Scholar 

  23. H P Moravec: Towards automatic visual obstacle avoidance. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, August 1977.

    Google Scholar 

  24. W M Morrow, and R M Rangayyan: Featureadaptive enhancement and analysis of high-resolution digitized mammograms. In Proceedings of 12th IEEE Engineering in Medicine and Biology Conference, pages 165–166, IEEE, Piscataway, NJ, 1990.

    Google Scholar 

  25. W M Morrow, R B Paranjape, R M Rangayyan, and J E L Desautels: Region-based contrast enhancement of mammograms. IEEE Transactions on Medical Imaging, 11 (3): 392–406, 1992.

    Article  Google Scholar 

  26. M Nagao, and T Matsuyama: A Structural Analysis of Complex Aerial Photographs. Plenum Press, New York, 1980.

    Book  Google Scholar 

  27. R Nevatia: Evaluation of simplified Hueckel edge-line detector. Computer Graphics and Image Processing, 6 (6): 582–588, 1977.

    Article  Google Scholar 

  28. A Papoulis: Probability, Random Variables, and Stochastic Processes. McGraw Hill, New York, 1965.

    Google Scholar 

  29. R B Paranjape, R N Rangayyan, Morrow W M, and H N Nguyen: Adaptive neighborhood image processing. In Proceedings of Visual Communications and Image Processing, Boston, Ma, pages 198–207, SPIE, Bellingham, Wa, 1992.

    Google Scholar 

  30. R B Paranjape, R N Rangayyan, W M Morrow, and H N Nguyen: Adaptive neighborhood image processing. CVGIP — Graphical Models and Image Processing, 54 (3): 259–267, 1992.

    Article  Google Scholar 

  31. P Perona, and J Malik: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (7): 629–639, 1990.

    Article  Google Scholar 

  32. I Pitas, and A N Venetsanopulos: Nonlinear order statistic filters for image filtering and edge detection. Signal Processing, 10 (10): 573–584, 1986.

    Google Scholar 

  33. S M Pizer, E P Amburn, J D Austin, R Cromartie, A Geselowitz, T Greer, B Haar-Romeny, J B Zimmerman, and K Zuiderveld: Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39: 355–368, 1987.

    Google Scholar 

  34. W K Pratt: Digital Image Processing. John Wiley and Sons, New York, 1978.

    Google Scholar 

  35. L G Roberts: Machine perception of three-dimensional solids. In J T Tippett, editor, Optical and Electro-Optical Information Processing, pages 159–197. MIT Press, Cambridge, Ma, 1965.

    Google Scholar 

  36. Rosenfeld and Kak 82] A Rosenfeld, and A C Kak: Digital Picture Processing. Academic Press, New York, 2nd edition, 1982.

    Google Scholar 

  37. A Rosenfeld, and M Thurston: Edge and curve detection for visual scene analysis. IEEE Transactions on Computers, 20 (5): 562–569, 1971.

    Article  Google Scholar 

  38. E Saund: Symbolic construction of a 2D scale-space image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12: 817–830, 1990.

    Article  Google Scholar 

  39. L Spacek: Edge detection and motion detection. Image and Vision Computing, pages 43–52, 1986.

    Google Scholar 

  40. H D Tagare, and R J P deFigueiredo: On the localization performance measure and optimal edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (12): 1186–1190, 1990.

    Article  Google Scholar 

  41. V Topkar, B Kjell, and A Sood: Object detection using scale-space. In Proceedings of the Applications of Artificial Intelligence VIII Conference, The International Society for Optical Engineering, pages 2–13, Orlando, Fl, April 1990.

    Google Scholar 

  42. S G Tyan: Median filtering, deterministic properties. In T S Huang, editor, Two—Dimensional Digital Signal Processing, volume I I. Springer Verlag, Berlin, 1981.

    Google Scholar 

  43. S Ullman: Analysis of visual motion by biological and computer systems. IEEE Computer, 14 (8): 57–69, August 1981.

    Article  Google Scholar 

  44. D C C Wang, and A H Vagnucci: Gradient inverse weighting smoothing schema and the evaluation of its performace. Computer Graphics and Image Processing, 15, 1981.

    Google Scholar 

  45. D J Williams, and M Shah: Edge contours using multiple scales. Computer Vision, Graphics, and Image Processing, 51: 256–274, September 1990.

    Google Scholar 

  46. A P Witkin: Scale—space filtering. In Proceedings of the 8th Joint Conference on Artificial Intelligence, pages 1019–1022, Karlsruhe, Germany, 1983.

    Google Scholar 

  47. L P Yaroslayskii: Digital Signal Processing in Optics and Holography (in Russian). Radio i svjaz, Moscow, USSR, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Milan Sonka, Vaclav Hlavac and Roger Boyle

About this chapter

Cite this chapter

Sonka, M., Hlavac, V., Boyle, R. (1993). Image pre-processing. In: Image Processing, Analysis and Machine Vision. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3216-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3216-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-45570-4

  • Online ISBN: 978-1-4899-3216-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics