Skip to main content

Reverse mutations. Suppressors

  • Chapter
  • 292 Accesses

Abstract

Operationally, reverse mutations are defined as mutations that fully or partially restore the activity of a mutant gene. In the early days of mutation research, the occurrence of reverse mutations was used as an argument against the presence-absence theory (Chapter 1). Subsequently, the same argument was used to prove that X-rays can produce intragenic changes. However, in Drosophila the evidence for reverse mutation is meagre, and in maize — the only other object of mutation studies at that time — the then best authenticated case of reverse mutation appears to be due to loss of a controlling element rather than to true gene mutation (see Chapter 22). Moreover, it was soon realized that apparent reversions may be due to suppressor mutations in other genes. The distinction between true reversion and reversion by a suppressor mutation can be made easily when the mutant gene and the suppressor are not closely linked, for then the mutant gene will again segregate out unsuppressed in crosses to wild-type. If, however, linkage between mutant gene and suppressor is close, separation between them by crossing-over will be correspondingly rare. Large experiments are necessary to detect linked suppressors, and failure of the mutant gene to reappear in the progeny cannot usually exclude the possibility of very close linkage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yanofsky, C., Ito, J. and Horn, V. (1966), ‘Amino acid replacements and the Genetic Code’, Cold Spring Harbor Symp. Quant. Biol., 31, 151–162.

    Article  PubMed  CAS  Google Scholar 

  2. Sarabhai, A. and Brenner, S. (1967), ‘A mutant which reinitiates the polypetide chain after chain termination’, J. Mol. Biol., 27, 145–162.

    Article  PubMed  CAS  Google Scholar 

  3. Guest, J.R. and Yanofsky, C. (1965), ‘Amino acid replacements associated with reversion and recombination within a coding unit’, J. Mol. Biol., 12, 793–804.

    Article  PubMed  CAS  Google Scholar 

  4. Berger, H. and Yanofsky, C. (1967), ‘Suppressor selection for amino acid replacements expected on the basis of the genetic code’, Science, 156, 394–397.

    Article  PubMed  CAS  Google Scholar 

  5. Koch, R.E. (1971), ‘The influence of neighboring base pairs upon base-pair substitution mutation rates’, Proc. Nat. Acad. Sci., U.S.A. 68, 773–776.

    Article  CAS  Google Scholar 

  6. Yanofsky, C., Horn, V. and Thorpe, D. (1964), ‘Protein structure relationships revealed by mutational analysis’, Science, 146, 1593–1594.

    Article  PubMed  CAS  Google Scholar 

  7. Gorini, L. (1966), ‘Antibiotics and the Genetic Code’, Scient. Am., 214, 102–109.

    Article  CAS  Google Scholar 

  8. Gorini, L., Jacoby, G. and Breckenridge, L. (1966), ‘Ribosomal ambiguity’, Cold Spring Harbor Symp. Quant. Biol., 31, 657–664.

    Article  PubMed  CAS  Google Scholar 

  9. Davies, J., Gilbert, W. and Gorini, L. (1964), ‘Streptomycin, suppression and the code’, Proc. Nat. Acad. Sct., U.S.A., 51, 883–890.

    Article  CAS  Google Scholar 

  10. Apirion, D. and Schlessinger, D. (1969), Functional interdependence of ribosomal components of Escherichia coli, Proc. Nat. Acad. Sci., U.S.A., 63, 794–799.

    Article  CAS  Google Scholar 

  11. Gorini, L. (1969), ‘The contrasting role of strA and ram gene products in ribosomal functioning’, Cold Spring Harbor Symp. Quant. Biol., 34, 101–111.

    Article  PubMed  CAS  Google Scholar 

  12. Atkins, J.F., Elseviers, D. and Gorini, L. (1972), ‘Low activity of β-galactosidase in frameshift mutants of Escherichia coli’, Proa Nat. Acad. Sct., U.S.A. 69, 1192–1195.

    Article  CAS  Google Scholar 

  13. Champe, S.P. and Benzer, S. (1962), ‘Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA’, Proc. Nat. Acad. Sci., U.S.A., 48, 532–546.

    Article  CAS  Google Scholar 

  14. Benzer, S. and Champe, S.P. (1962), ‘A change from nonsense to sense in the genetic code’, Proc. Nat. Acad. Sct., U.S.A., 48, 1114–1121.

    Article  CAS  Google Scholar 

  15. Rosen, B., Rothman, F. and Weigert, M.G. (1969), ‘Miscoding caused by 5-fluorouracil’, J. Mol. Biol., 44, 363–375.

    Article  PubMed  CAS  Google Scholar 

  16. Ottensmeyer, F.P. and Whitmore, G.F. (1968), ‘Coding properties of ultraviolet photoproducts of uracil. II Phenotypic reversion of the amber mutation: implication of the uracil hydrate’, J. Mol. Biol. 38, 17–24.

    Article  PubMed  CAS  Google Scholar 

  17. Salser, W., Fluck, M. and Epstein, R. (1969), ‘The influence of the reading context upon the suppression of nonsense codons, III’, Cold Spring Harbor Symp. Quant. Biol., 34, 513–520.

    Article  PubMed  CAS  Google Scholar 

  18. Topisirovič, L., Metlaš, R. and Kanazir, D.T. (1973), ‘A slowgrowing, ribosomal mutant of Salmonella typhimuriumMolec. Gen. Genetics 123, 135–142.

    Article  Google Scholar 

  19. Garen, A. and Siddiqi, O. (1962), ‘Suppression of mutations in the alkaline phosphatase structural cistron of E. coli’, Proc. Nat. Acad. Sci., U.S.A., 48, 1121–1127.

    Article  CAS  Google Scholar 

  20. Carbon, J., Berg, P. and Yanofsky, C. (1966), ‘Studies of missense suppression of the tryptophan synthetase A-protein mutant A36’, Proc. Nat. Acad. Sct., U.S.A., 56, 764–771.

    Article  CAS  Google Scholar 

  21. Carbon, J. and Curry, J.B. (1968), ‘Genetically and chemically derived missense suppressor transfer RNA’s with altered enzymic aminoacylation rates’, J. Mol. Biol., 38, 201–216.

    Article  PubMed  CAS  Google Scholar 

  22. Gupta, N.K. and Khorana, H.G. (1966), ‘Missense suppression of the tryptophan synthetase A-protein mutant A78’, Proc. Nat. Acad. Sct., U.S.A., 56, 772–779.

    Article  CAS  Google Scholar 

  23. Carbon, J., Berg, P. and Yanofsky, C. (1966), ‘Missense suppression due to a genetically altered t-RNA’, Cold Spring Harbor Symp. Quant. Biol., 31, 487–497.

    Article  PubMed  CAS  Google Scholar 

  24. Ritossa, F.M., Atwood, K.C. and Spiegelman, S. (1966), ‘On the redundancy of DNA complementary to amino acid transfer RNA and its absence from the nucleolar organizer region of Drosophila melanogaster’, Genetics, 54, 663–676.

    PubMed  CAS  Google Scholar 

  25. Gilmore, R., Stewart, J. and Sherman, F. (1971), ‘Amino acid replacements resulting from supersuppression of nonsense mutants of iso-1-cytochrome c from yeast’, J. Mol. Biol., 61, 157–173.

    Article  PubMed  CAS  Google Scholar 

  26. Hill, G, Foulds, J., Soll, L. and Berg, P. (1969), ‘Instability of a missence suppressor resulting from a duplication of genetic material’, J. Mol. Biol., 39, 563–581.

    Article  PubMed  CAS  Google Scholar 

  27. Garen, A. (1968), ‘Sense and nonsense in the genetic code’, Science, 160, 149–159.

    Article  PubMed  CAS  Google Scholar 

  28. Goodman, H.M., Abelson, J., Landy, A., Brenner, S. and Smith, J.D. (1968), ‘Amber suppression: a nucleotide change in the anticodon of a tyrosine transfer RNA’, Nature, 217, 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  29. Smith, J.D. and Celis, J.E. (1973), ‘Mutant tyrosine transfer RNA that can be charged with glutamine’, Nature New Biology 243, 66–71.

    Article  PubMed  CAS  Google Scholar 

  30. Hirsh, D. (1971), ‘Tryptophan transfer RNA as the UGA suppressor’, J. Mol. Biol., 58, 439–458.

    Article  PubMed  CAS  Google Scholar 

  31. Reeves, R.H. and Roth, J.R. (1971), ‘A recessive UGA suppressor’, J. Mol. Biol., 56, 523–533.

    Article  PubMed  CAS  Google Scholar 

  32. Bridges, B.A., Dennis, R.E. and Munson, R.J. (1967), ‘Mutation in Escherichia coli B/r WP2 try by reversion or suppression of a chain-terminating codon’, Mutation Res., 4, 502–504.

    Article  PubMed  CAS  Google Scholar 

  33. Nichols, J.L. (1970), ‘Nucleotide sequence from the polypeptide chain termination region of the coat protein cistron in bacteriophage R17 RNA’ Nature, 225, 147–151.

    Article  PubMed  CAS  Google Scholar 

  34. Steitz, J.A. (1969), ‘Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA’, Nature, 224, 957–964.

    Article  PubMed  CAS  Google Scholar 

  35. Rechler, M.M. and Martin, R.G. (1970), ‘The intercistronic divide: translation of an intercistronic region in the histidine operon in Salmonella typhimurium’, Nature, 226, 908–911.

    Article  PubMed  CAS  Google Scholar 

  36. Soll, L. and Berg, P. (1969), Recessive lethals: a new class of nonsense suppressors in Escherichia coli., Proc. Nat. Acad. Sci., U.S.A., 63, 392–399.

    Article  CAS  Google Scholar 

  37. Miller, C. and Roth, J. (1971), ‘Recessive-lethal nonsense suppressors in Salmonella typhimurium’, J. Mol. Biol., 59, 63–75.

    Article  PubMed  CAS  Google Scholar 

  38. Yaniv, M., Folk, W.R., Berg, P. and Soll, L. (1974), ‘A single mutational modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG’. J. Mol. Biol. 86, 245–260.

    Article  PubMed  CAS  Google Scholar 

  39. Mortimer, R.K. and Gilmore, R.A. (1968), ‘Suppressors and suppressible mutations in yeast’, Adv. Biol. Med. Physics, 12, 319–331.

    CAS  Google Scholar 

  40. Manney, T.R. (1968), ‘Evidence for chain termination by supersuppressible mutants in yeast’, Genetics, 60, 719–733.

    PubMed  CAS  Google Scholar 

  41. Gilmore, R.A., Stewart, J.W. and Sherman, F. (1971), ‘Amino acid replacements resulting from supersuppression of nonsense mutants of iso-1-cytochrome c from yeast’, J. Mol. Biol., 61, 157–173.

    Article  PubMed  CAS  Google Scholar 

  42. Stewart, J.W., Sherman, F., Jackson, M., Thomas, F.L.X. and Shipman, N. (1972), ‘Demonstration of the UAA ochre codon in bakers’ yeast by amino acid replacements in iso-1-cytochrome c’, J. Mol. Biol., 68, 83–96.

    Article  PubMed  CAS  Google Scholar 

  43. Stewart, J.W. and Sherman, F. (1972), ‘Demonstration of UAG as a nonsense codon in bakers’ yeast by amino acid replacements in iso-l-cytochrome c’, J. Mol. Biol., 68, 429–443.

    Article  PubMed  CAS  Google Scholar 

  44. Kiger, J.A., Jr. and Brantner, C.J. (1973), ‘The inability of transfer RNA to suppress an amber mutation in an E. coli system’, Genetics, 73, 23–28.

    PubMed  CAS  Google Scholar 

  45. Smirnov, V.N., Kreier, V.G., Lizlova, L.V., Andrianova, V.M. and Inge-Vechtomov, S.G. (1974), ‘Recessive supersuppression in yeast’, Mol. Gen. Genetics 129, 105–121.

    Article  CAS  Google Scholar 

  46. Manthorne, D.C. and Leupold, U. (1974), ‘Suppressor mutations in yeast’, Current Topics in Microbiology and Immunology, 64, 1–47.

    Article  Google Scholar 

  47. Seale, T. (1968), ‘Reversion of the am locus in Neurospora: evidence for nonsense suppression’, Genetics, 58, 85–99.

    PubMed  CAS  Google Scholar 

  48. Yourno, J. and Kohno, T. (1972), ‘Externally suppressible proline quadruplet CCCu’, Science, 175, 650–652.

    Article  PubMed  CAS  Google Scholar 

  49. Riddle, D. and Roth, J. (1972), Frameshift suppressors II. ‘Genetic mapping and dominance studies’, J. Mol. Biol., 66, 483–493.

    Google Scholar 

  50. Riddle, D. and Roth, J. (1972), ’Frameshift suppressors III. ‘Effects of suppressor mutations on transfer RNA’, J. Mol. Biol., 66, 495–506.

    Article  PubMed  CAS  Google Scholar 

  51. Riddle, D.L. and Carbon, J. (1973), ‘Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA’, Nature New Biology, 242, 230–234.

    Article  PubMed  CAS  Google Scholar 

  52. Ames, B.N. and Whitfield, H.J. Jr. (1966), ‘Frameshift mutagenesis in Salmonella’, Cold Spring Harbor Symp. Quant.Biol., 31, 221–225.

    Article  PubMed  CAS  Google Scholar 

  53. Magni, G. (1969), ‘Spontaneous mutations’, Proc. 12th Int. Congr. Genetics, Vol. 3, 247–259.

    Google Scholar 

  54. Freedman, R. and Brenner, S. (1972), ‘Anomalously revertible rII mutants of phage T4’, Genet Res., Camb., 19, 165–171.

    Article  CAS  Google Scholar 

  55. Twardzik, D.R., Grell, E.H. and Jacobson, K.B. (1971), ‘Mechanism of suppression in Drosophila: a change in tyrosine transfer RNA’, J. Mol. Biol., 57, 231–245.

    Article  PubMed  CAS  Google Scholar 

  56. White, B.N., Tener, G.M., Holden, J. and Suzuki, D.T. (1973), ‘Activity of a transfer RNA modifying enzyme during the development of Drosophila and its relationship to the su(s) locus’. J. Mol. Biol., 74, 636–651.

    Article  Google Scholar 

  57. Jacobson, K.B., Calvine, J.F. and Murphy, J.B. (1973), ‘Tyrosyl-tRNA and its synthetase in a suppressor mutant of DrosophilaFed. Proc. 32, 654.

    Google Scholar 

  58. Bahn, E. (1972), ‘A suppressor locus for the pyrimidine requiring mutant: rudimentary’, Drosophila Information Service, 49, 98.

    Google Scholar 

  59. Reissig, J.L. (1963), ‘Spectrum of forward mutants in the pyr-3 region of Neurospora’, J. Gen. Microbiol, 30, 327–337.

    Article  PubMed  CAS  Google Scholar 

  60. Case, M.E., Giles, N.H. and Doy, C.H. (1972), ‘Genetical and biochemical evidence for further interrelationship between the polyaromatic synthetic and the quinate-shikimate catabolic pathways in Neurospora crassa’, Genetics, 71, 337–348.

    PubMed  CAS  Google Scholar 

  61. Weglenski, P. (1967), ‘The mechanism of action of proline suppressors in Aspergillus nidulans’, J. Gen. Microbiol, 47, 77–85.

    Article  PubMed  CAS  Google Scholar 

  62. Gundelach, E. (1973), ‘Suppressor studies on ilv-1 mutants of S. cerevisiae’, Mutation Res., 20, 25–33.

    Article  PubMed  CAS  Google Scholar 

  63. Kuo, T. and Stocker, B. (1969), ‘Suppression of proline requirement of proA and proAB deletion mutants in Salmonella typhimurium by mutation to arginine requirement’, J. Bacter., 98, 593–598.

    CAS  Google Scholar 

  64. Dubnau, E. and Margolin, P. (1972), ‘Suppression of promotor mutations by the pleiotropic sup x mutations’, Molec. Gen. Genetics, 117, 91–112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Charlotte Auerbach

About this chapter

Cite this chapter

Auerbach, C. (1976). Reverse mutations. Suppressors. In: Mutation research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3103-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3103-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-11280-5

  • Online ISBN: 978-1-4899-3103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics