Skip to main content

Classification of gene mutations

  • Chapter
Mutation research
  • 273 Accesses

Abstract

Most mutations are of this type. The main part of this chapter will be devoted to their classification both by effect and by molecular basis. At the end of the chapter we shall briefly consider the much smaller but very important class of mutations that affect simultaneously the action of several genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Muller, H.J. (1932), ‘Further studies on the nature and causes of gene mutations’, Proc. 6th Int. Cong. Genetics, Brooklyn Botanic Gardens, U.S.A. Vol. 1, 213–255.

    Google Scholar 

  2. Giles, N.H. (1958), ‘Mutations at specific loci in Neurospora’, Proc. 10th Int. Congr, Genetics, Vol. 1, 261–279.

    Google Scholar 

  3. Pateman, J.A. and Fincham, J.R.S. (1964), Complementation and enzyme studies of revertants induced in an am mutant of N. crassa, Genet. Res. Camb., 6, 419–432.

    Article  CAS  Google Scholar 

  4. Stern, C. (1929), ‘Über die Additive Wirkung Multipler Allele’, Sonderdruck aus dem ‘Biologischen Zentralblatt’, 49, 261–290.

    Google Scholar 

  5. Muller, H. J. (1950), ‘Evidence of the precision of genetic adaptation’, Harvey Lecture Series XLII, 1947–1948, 1, 165–229.

    Google Scholar 

  6. Stern, C. (1948), ‘The effects of changes in quantity, combination and position of genes’, Science, 108, 615–621.

    Article  PubMed  CAS  Google Scholar 

  7. Bonner, D.M., Yanofsky, C. and Partridge, C.W.H. (1952), Incomplete genetic blocks in biochemical mutants of Neurospora, Proc. Nat. Acad. Sci., U.S.A., 38, 25–34.

    Article  CAS  Google Scholar 

  8. Edgar, R.S. and Lielausis, I. (1964), ‘Temperature-sensitive mutants of bacteriophage T4D: their isolation and genetic characterization’, Genetics, 49, 649–662.

    PubMed  CAS  Google Scholar 

  9. Langridge, G. (1968), ‘Thermal responses of mutant enzymes and temperature limits to growth’, Molec. Gen. Genetics, 103, 116–126.

    Article  CAS  Google Scholar 

  10. Hartwell, L.H. (1967), ‘Macromolecular synthesis in temperaturesensitive mutants of yeast’ J. Bacter., 93, 1662–1670.

    CAS  Google Scholar 

  11. Horowitz N.H. and Fling, M. (1953), ‘Genetic determination of tyrosinase thermostability in Neurospora’, Genetics, 38, 360–374.

    PubMed  CAS  Google Scholar 

  12. Suzuki, D.T. (1970), ‘Temperature-sensitive mutations in Drosophila melanogaster’, Science, 170, 695–706.

    Article  PubMed  CAS  Google Scholar 

  13. Roberds, D.R. and de Busk, A.G.(1973), ‘Cold-sensitive mutants of Neurospora crassa’, J. Bacter., 115, 1121–1129.

    CAS  Google Scholar 

  14. Stern, C. and Schaeffer, E.W. (1943), ‘On wild-type iso-alleles in Drosophila melanogaster’, Proc. Nat. Acad. Sci. U.S.A. 29, 361–367.

    Article  CAS  Google Scholar 

  15. Srb, A.M. and Basl, M. (1972), ‘Evidence for the differentiation of wild-type alleles in different species of Neurospora’, Genetics, 72, 759–762.

    PubMed  CAS  Google Scholar 

  16. Sirotnak, F.M., Hachtel, S.L. and Williams, W.A. (1969), ‘Increased dihydrofolate reductase synthesis in Diplococcus pneumoniae following translatable alteration of the structural gene. 11. Individual and dual effects on the properties and rate of synthesis of the enzyme’, Genetics, 61, 313–326.

    PubMed  CAS  Google Scholar 

  17. Langridge, J. (1969), ‘Mutations conferring quantitative and qualitative increases in β-galactosidase activity in Escherichia coli’, Molec. Gen. Genetics, 105, 74–83.

    Article  CAS  Google Scholar 

  18. Francis, J.C. and Hansche, P.E. (1972), ‘Directed evolution of metabolic pathways in microbial populations. 1. Modification of the acid phosphatase pH optimum in S. cerevisiae’, Genetics, 70, 59–73.

    PubMed  CAS  Google Scholar 

  19. Suskind, S.R., Yanofsky, C. and Bonner, D.M. (1955), Allelic strains of Neurospora lacking tryptophan synthetase: a preliminary immunochemical characterization; Proc. Nat. Acad. Sct., U.S.A. 41, 577–582.

    Article  CAS  Google Scholar 

  20. Ingram, V.M. (1961), ‘Gene evolution and the haemoglobins’, Nature, 189, 704–708.

    Article  PubMed  CAS  Google Scholar 

  21. Salmon, C. (1971), ‘Le complex cis AB et le locus ABO’, Proc. 4th Int. Congr. Human Genetics, Paris in Excerpta Medica. Int. Congress Series, 233, 10.

    Google Scholar 

  22. Campbell, J.H., Lengyel, J.A. and Langridge, J. (1973), ‘Evolution of a second gene for β-galactosidase in Escherichia coli’, Proc. Nat. Acad. Sci., U.S.A., 70, 1841–1845.

    Article  CAS  Google Scholar 

  23. Hartl, D.L. and Hall, B.G. (1974), ‘Second naturally occurring β-galactosidase in E. coli’, Nature, 248, 152–153.

    Article  PubMed  CAS  Google Scholar 

  24. Freese, Ernst (1963), ‘Molecular mechanism of mutations’, in Molecular Genetics Part 7, Ch. V., ed., J.H. Taylor, Academic Press, New York.

    Google Scholar 

  25. Crick, F.H., Barnett, L., Brenner, S. and Watts-Tobin, R.J. (1961), ‘General nature of the genetic code for proteins’, Nature, 192, 1227–1232.

    Article  PubMed  CAS  Google Scholar 

  26. Holley, R.W., Apgar, J., Everett, G.A., Madison, J.T. et al. (1965), ‘Structure of a ribonucleic acid’, Science, 147, 1462–1465.

    Article  PubMed  CAS  Google Scholar 

  27. Agarwal, K.L., Büchi, H., Caruthers, M.H., Gupta, N., Khorana, H.G. et al. (1970), ‘Total synthesis of the gene for alanine transfer ribonucleic acid from yeast’, Nature, 227, 27–34.

    Article  PubMed  CAS  Google Scholar 

  28. Wittmann, H.G. and Wittmann-Liebold, B. (1966), ‘Protein chemical studies of two RNA viruses and their mutants’, Cold Spring Harbor Symp. Quant. Biol., 31, 163–172.

    Article  PubMed  CAS  Google Scholar 

  29. Yanofsky, C. (1965), ‘Gene structure and protein structure’, The Harvey Lecture Series, 61, 145–168.

    CAS  Google Scholar 

  30. Prakash, L. and Sherman, F. (1973), ‘Mutagenic specificity: reversion of Iso-1-cytochrome c mutants of yeast’, J. Mol. Biol., 79, 65–82.

    Article  PubMed  CAS  Google Scholar 

  31. Gilmore, R.A., Stewart, J.W. and Sherman, F. (1971), ‘Amino acid replacements resulting from super-suppression of nonsense mutants of Iso-1-cytochrome c from yeast’, J. Mol. Biol., 61, 157–173.

    Article  PubMed  CAS  Google Scholar 

  32. Langridge, J. (1968), ‘Genetic evidence for the disposition of the substrate binding site of β-galactosidase’, Proc. Nat. Acad. Sci. U.S.A., 60, 1261–1267.

    Article  Google Scholar 

  33. Hawthorne, D.C. and Friis J. (1964), ‘Osmotic-remedial mutants. Anew classification for nutritional mutants in yeast’, Genetics, 50, 829–839.

    PubMed  CAS  Google Scholar 

  34. Jones, E.W. (1972), ‘Fine structure analysis of the ade 3 locus in Saccharomyces cerevisiae’, Genetics, 70, 233–250.

    PubMed  CAS  Google Scholar 

  35. Case, M.E., Burgoyne, L. and Giles, N.H. (1969), ‘In vivo and in vitro complementation between DHQ synthetase mutants in the arom gene cluster of Neurospora crassa’, Genetics, 63, 581–588.

    Google Scholar 

  36. Foley, J.M., Giles, N.H. and Roberts, C.F. (1965), ‘Complementation at the adenylosuccinase locus in Aspergillus nidulans’, Genetics, 52, 1247–1263.

    PubMed  CAS  Google Scholar 

  37. Glassman, E. (1962), ‘Complementation between non-allelic Drosophila mutants deficient in xanthine dehydrogenase’, Proc. Nat. Acad. Sct., U.S.A., 48, 1491–1497.

    Article  CAS  Google Scholar 

  38. Schwartz, D. (1960), ‘Genetic studies on mutant enzymes in maize: synthesis of hybrid enzymes by heterozygotes’, Proc. Nat. Acad. Sci., U.S.A., 46, 1210–1215.

    Article  CAS  Google Scholar 

  39. Nashed, N.G., Jabbur, G. and Zimmerman, K.F. (1967), ‘Negative complementation among the ad2 mutants in yeast’, Molec. Gen. Genetics, 99, 65–75.

    Google Scholar 

  40. Garen, A. and Garen, S. (1963), ‘Complementation in vivo between structural mutants of alkaline phosphatase from E. coli’, J. Mol. Biol., 7, 13–22.

    Article  PubMed  CAS  Google Scholar 

  41. Lin, S. and Zabin, I. (1972), ‘β-Galactosidase: rates of synthesis and degradation of incomplete chains’. J. Biol. Chem. 247, 2205–2211.

    PubMed  CAS  Google Scholar 

  42. De Serres, F.J. (1964), ‘Mutagenesis and chromosome structure’, J. Cell. Comp. Physiol., 64, supp. 1, 34–42.

    Google Scholar 

  43. Yanofsky, C., Drapeau, G.R., Guest, J.R. and Carlton, B.C. (1967), ‘The complete amino acid sequence of the tryptophan synthetase A protein (a subunit) and its colinear relationship with the genetic map of the A gene’. Proc. Nat. Acad. Sci., U.S.A., 57, 296–298.

    Article  CAS  Google Scholar 

  44. Sarabhai, A.S., Stretton, A.O.W., Brenner, S. and Bolle, A. (1964), ‘Co-linearity of the gene with the polypeptide chain’, Nature, 201, 13–17.

    Article  PubMed  CAS  Google Scholar 

  45. Champe, S.P. and Benzer, S. (1962), ‘An active cistron fragment’, J. Mol. Biol., 4, 288–292.

    Article  PubMed  CAS  Google Scholar 

  46. Atkins, J.F., Elseviers, D. and Gorini, L. (1972), ‘Low activity of β-galactosidase in frameshift mutants of Escherichia coli’, Proc. Nat. Acad. Sci., U.S.A. 69, 1192–1195.

    Article  CAS  Google Scholar 

  47. Crick, F.H.C., Barnett, L., Brenner, S. and Watts-Tobin, R.J. (1961), ‘General Nature of the Genetic Code for proteins’, Nature, 192, 1227–1232.

    Article  PubMed  CAS  Google Scholar 

  48. Streisinger, G., Okada, Y., Emerich, J. et al. (1966), ‘Frameshift mutations and the genetic code’, Cold Spring Harbor Symp. Quant. Biol., 31, 77–84.

    Article  PubMed  CAS  Google Scholar 

  49. Yamamoto, M., Endo, H. and Kuwano, M. (1972), ‘A temperature-sensitive mutation in Escherichia coli transfer RNA’, J. Mol. Biol., 69, 387–396.

    Article  PubMed  CAS  Google Scholar 

  50. Kan, J. and Sueoka, N. (1971), ‘Further evidence for a single leucyl transfer ribonucleic acid synthetase capable of changing five leucine transfer ribonucleic acids in E. coli’, J. Biol. Chemistry, 246, 2207–2210.

    CAS  Google Scholar 

  51. Ashgar, S., Levin, E. and Harold, F.M. (1973), ‘Accumulation of neutral amino acids by Streptococcus faecalis’, J. Biol. Chemistry, 248, 5225–5233.

    Google Scholar 

  52. Section on ‘Polarity’, in’ symposium on The Genetic Code’, (1966), Cold Spring Harbor Symp. Quant. Biol., 31, 181–249.

    Google Scholar 

  53. Morse, D.E., Mosteller, R.D. and Yanofsky, C. (1966), ‘Dynamics of synthesis, translation and degradation of trp operon messenger RNA in E. coli’, Cold Spring Harbor Symp. Quant. Biol., 34, 725–740.

    Article  Google Scholar 

  54. Imamoto, F., Kano, Y. and Tani, S. (1970), ‘Transcription of the tryptophan operon in nonsense mutants of Escherichia coli’, Cold Spring Harbor Symp. Quant. Biol., 35, 471–490.

    Article  CAS  Google Scholar 

  55. Martin, R.G. (1967), ‘Frameshift mutants in the histidine operon of Salmonella typhimurium’, J. Mol. Biol., 26, 311–328.

    Article  PubMed  CAS  Google Scholar 

  56. Rechler, M.M. and Martin, R.G. (1970), ‘The intercistronic divide: translation of an intercistronic region in the histidine operon of Salmonella typhimurium’, Nature, 226, 908–911.

    Article  PubMed  CAS  Google Scholar 

  57. Newton, W.A., Beckwith, J., Zipser, D. and Brenner, S. (1966), ‘Nonsense mutants and polarity in the Lac operon of Escherichia coli’, J. Mol. Biol., 14, 290–296.

    Article  Google Scholar 

  58. Fink, G.R. and Martin, R.G. (1967), ‘Translation and polarity in the histidine operon, 2. Polarity in the histidine operon’, J. Mol. Biol., 30, 97–107.

    Article  PubMed  CAS  Google Scholar 

  59. Engelhardt, D.L., Webster, R.E. and Zinder, N.D. (1967), ‘Amber mutants and polarity in vitro’, J. Mol. Biol., 29, 45–58.

    Article  PubMed  CAS  Google Scholar 

  60. Yanofsky, C. and Ito, J. (1966), ‘Nonsense codons and polarity in the tryptophan operon’, J. Mol. Biol., 21, 313–334.

    Article  PubMed  CAS  Google Scholar 

  61. Carter, T. and Newton, A. (1971), ‘New polarity suppressors in Escherichia coli:Suppression and messenger RNA stability’, Proc. Nat. Acad. Sci., U.S.A., 68, 2962–2966.

    Article  CAS  Google Scholar 

  62. Morse, D.E. and Guertin, M. (1972), ‘Amber suA mutations which relieve polarity’, J. Mol. Biol., 63, 605–608.

    Article  PubMed  CAS  Google Scholar 

  63. Jordan, E., Saedler, H. and Starlinger, P. (1968), ‘O° and strongpolar mutations in the gal operon are insertions’, Molec. Gen. Genetics, 102, 353–363.

    Article  CAS  Google Scholar 

  64. Saedler, H., Besemer, J., Kemper, B., Rosenwirth, B. and Starlinger, P. (1972), ‘Insertion mutations in the control region of the gal operon of E. coli. 1. Biological charaterization of the mutations’, Molec. Gen. Genetics, 115, 258–265.

    CAS  Google Scholar 

  65. Hirsch, H. J., Saedler, H. and Starlinger, P. (1972), ‘Insertion mutations in the control region of the galactose operon of E. coli, 11. Physical characterization of the mutations’, Molec. Gen. Genetics, 115, 266–276.

    CAS  Google Scholar 

  66. Taylor, Austin L. (1953), ‘Bacteriophage-induced mutation in Escherichia coli’, Proc. Nat. Acad. Sci. U. S. A. 50, 1043–1051.

    Article  Google Scholar 

  67. Baker, Wm. K.(1968), ‘Position-effect variegation’ in Advances in Genetics’, Vol. 14, 133–169, ed. E.W. Caspari, Academic Press, New York-London.

    Google Scholar 

  68. Cattanach, B.M. (1968), ‘Incomplete inactivation of the Tabby locus in the mouse X-chromosome’, Genetics, 60, 168.

    Google Scholar 

  69. Terzaghi, E., Okada, I., Streisinger, G., Emrich, J., Inouye, M. and Tsugita, A. (1966), ‘Change of a sequence of amino acids in phage T4 lysozyme by acridine-induced mutations’, Proc. Nat. Acad. Scl., U.S.A., 56, 500–507.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Charlotte Auerbach

About this chapter

Cite this chapter

Auerbach, C. (1976). Classification of gene mutations. In: Mutation research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3103-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3103-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-11280-5

  • Online ISBN: 978-1-4899-3103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics