Skip to main content

Chemical mutagens: purines; base analogues; acridines; hydroxylamine; hydrazine; bisulphite. Reversion analysis

  • Chapter
  • 275 Accesses

Abstract

The possibility that purines or pyrimidines might be mutagenic had already been considered at a time when most geneticists thought that the specificity of the gene resided in its protein moiety. A considerable number of compounds were tested. While the results with pyrimidines were negative, various purines were found to produce chromosome breaks in plants and mutations in fungi and bacteria. Special interest was aroused by the mutagenic effects of caffeine because of the large amount of it that civilized man consumes in tea or coffee. At present, this interest has been revived through the prevailing preoccupation with genetic hazards from the environment. A recent issue of Mutation Research is wholly devoted to the genetic effects of caffeine (1). The introductory article by Kihlman surveys what is known about its mutagenic and chromosome breaking activity; it should be consulted for references to earlier literature. The remainder of the issue deals with the interaction effects between caffeine and other mutagens; those with UV have been mentioned in Chapter 14, those with alkylating agents in Chapter 16. The mechanism by which caffeine and related compounds act as mutagens in their own right is not yet understood. It is likely that, as in their synergistic action with other mutagens, they act via inhibition of enzymes concerned with repair and, perhaps, with other processes such as fidelity of DNA replication and the rejoining of broken chromosomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proceedings of Symposium, (1974), ‘Caffeine as an environmental mutagen and the problem of synergistic effects’, Mutation Res. 26, (no. 2) 51–155.

    Google Scholar 

  2. Litman, R. and Pardee, A.B. (1956), ‘Production of bacteriophage mutants by disturbance of deoxyribonucleic acid metabolism’, Nature 178, 529–531.

    Article  PubMed  CAS  Google Scholar 

  3. Benzer, S. and Freese, E. (1958), ‘Induction of specific mutations with 5-bromouracil’, Proc. Nat. Acad. Sci. U.S.A. 44, 112–119.

    Article  CAS  Google Scholar 

  4. Freese, E. (1959), ‘The specific mutagenic effect of base analogues on phage T4’, J. Mol. Biol. 1, 87–105.

    Article  CAS  Google Scholar 

  5. Rudner, R. (1961), ‘Mutation as an error in base pairing. I. The mutagenicity of base analogues and their incorporation into the DNA of Salmonella typhimurium’, Zeitschr. Vererb. Lehre. 92, 336–360.

    CAS  Google Scholar 

  6. Strelzoff, E. (1962), ‘DNA synthesis and induced mutations in the presence of 5-bromouracil. II Induction of mutations’, Zeitschr. Vererb. Lehre. 93, 301–318.

    Google Scholar 

  7. Terzaghi, B.E., Streisinger, G. and Stahl, F.W. (1962) ‘The mechanism of 5-bromouracil mutagenesis in the bacteriophage T4’, Proc. Nat. Acad. Sci. U.S.A. 48, 1519–1524.

    Article  CAS  Google Scholar 

  8. Litman, R.M. and Pardee, A.B. (1960), ‘The induction of mutants of bacteriophage T2 by 5-bromouracil. III. Nutritional and structural evidence regarding mutagenic action’, Biochim. Biophys. Acta 42, 117–130.

    Article  PubMed  CAS  Google Scholar 

  9. Luzzati, D. (1957), ‘Sur les répercussions génétiques de la substitution de la thymine par le 5-iodouracyle dans l’acide desoxyribonucléique de E. coli 15T’, C.R. Acad. Sci. 245, 1466–1468.

    CAS  Google Scholar 

  10. Kramer, G., Wittmann, H.G. and Schuster, H. (1964), ‘Die Erzeugung von Mutanten des Tabakmosaikvirus durch den Einbau von Fluorouracil in die Virus-nukleinsäure’, Z. Naturf, 19b, 46–51.

    CAS  Google Scholar 

  11. Cooper, P.D. (1964). ‘The mutation of poliovirus by 5-fluorouracil’, Virology 22, 186–192.

    Article  PubMed  CAS  Google Scholar 

  12. Herrington, M.B. and Takahashi, I. (1973), ‘Mutagenesis of bacteriophage PBS2’, Mutation Res. 20, 275–278.

    Article  PubMed  CAS  Google Scholar 

  13. Salganik, R.I., Vasjunina, E.A., Poslovina, A.S. and Andrieva, I.S. (1973), ‘Mutagenic action of N4-hydroxycytidine on E. coli B cyt’, Mutation Res. 20, 1–5.

    Article  PubMed  CAS  Google Scholar 

  14. Litman, R.M. and Pardee, A.B. (1960), ‘The induction of mutants of bacteriophage T2 by 5-bromouracil. IV. Kinetics of bromouracil-induced mutagenesis’, Biochim. Biophys. Acta, 42, 131–140.

    Article  PubMed  CAS  Google Scholar 

  15. Dunn, D.B. and Smith, I.D. (1954), ‘Incorporation of halogenated pyrimidines into the deoxyribonucleic acids of bacterium coli and its bacteriophages’, Nature, 174, 305–307.

    Article  PubMed  CAS  Google Scholar 

  16. Zamenhof, S. and Griboff, G. (1954), ‘E. coli containing 5-bromouracil in its deoxyribonucleic acid’, Nature, 174, 307–308.

    Article  PubMed  CAS  Google Scholar 

  17. Wacker, A., Kirschfeld, S. and Träger, L. (1960), ‘über den Einbau Purin-analoger Verbindungen in die Bakterien-Nukleinsäure’, J. Mol. Biol., 2, 241–242.

    Article  CAS  Google Scholar 

  18. Howard, B.D. and Tessman, I. (1964), ‘Identification of the altered bases in mutated single-stranded DNA. II. In vivo mutagenesis by 5-bromodeoxyuridine and 2-aminopurine’, J.Mol. Biol., 9, 364–371.

    Article  PubMed  CAS  Google Scholar 

  19. Eisenstark, A., Eisenstark, R. and Sickle, R. van (1965), ‘Mutation of Salmonella typhimurium by nitrosoguanidine’, Mutation Res., 2, 1–10.

    Article  PubMed  CAS  Google Scholar 

  20. Osborn, M., Person, S., Phillips, S. and Funk, F. (1967), ‘A determination of mutagen specificity in bacteria using nonsense mutants of bacteriophage T4’, J. Mol. Biol., 26, 437–447.

    Article  PubMed  CAS  Google Scholar 

  21. Sora, S., Panzeri, L. and Magni, G.E. (1973), ‘Molecular specificity of 2-aminopurine in Saccharomyces cerevisiae’, Mutation Res., 20, 207–213.

    Article  PubMed  CAS  Google Scholar 

  22. Hsu, T.C. and Somers, C.E. (1961), ‘Effect of 5-bromodeoxyuridine on mammalian chromosomes’, Proc. Nat. Acad. Sci. U.S.A., 47, 396–403.

    Article  CAS  Google Scholar 

  23. Hirono, Y. and Smith, H.H. (1969), ‘Mutations induced in Arabidopsis by DNA nucleoside analogs’. Genetics, 61, 191–199.

    PubMed  CAS  Google Scholar 

  24. Kaufmann, B.P. and Gay, H. (1970), ‘Induction by 5-bromodeoxyuridine of sex-linked lethal mutations in spermatogenous cells of Drosophila melanogaster’, Mutation Res. 10, 591–595.

    Article  PubMed  CAS  Google Scholar 

  25. Freese, E. (1959), ‘The specific mutagenic effect of base analogues on phage T4’, J. Mol. Biol., 1, 87–105.

    Article  CAS  Google Scholar 

  26. Koch, R.E. (1971), ‘The influence of neighboring base pairs upon base-pair substitution mutation rates’, Proc. Nat. Acad. Sci. U.S.A., 68, 773–776.

    Article  CAS  Google Scholar 

  27. Drake, J.N. and Greening, E.O. (1970), ‘Suppression of chemical mutagenesis in bacteriophage T4 by genetically modified DNA polymerases’, Proc. Nat. Acad. Sci. U.S.A., 66, 823–829.

    Article  CAS  Google Scholar 

  28. Pietrzykowska, I. (1973), ‘On the mechanism of bromouracilinduced mutagenesis’, Mutation Res., 19, 1–9.

    Article  PubMed  CAS  Google Scholar 

  29. Witkin, E.M. and Parisi, E.C., (1974), ‘Bromouracil mutagenesis: mispairing or misrepair’, Mutation Res., 25, 407–409.

    Article  PubMed  CAS  Google Scholar 

  30. Fermi, G. and Stent, G. (1962), ‘Effects of chloramphenicol and of multiplicity of infection on induced mutation in bacteriophage T4’, Zeitschr. Vererb. Lehre, 93, 177–187.

    CAS  Google Scholar 

  31. Hill, B.T., Tsuboi, A. and Baserga, R. (1974), ‘Effect of 5-bromodeoxyuridine on chromatin transcription in confluent fibroblasts’, Proc. Nat. Acad. Sci. U.S.A., 71, 455–459.

    Article  CAS  Google Scholar 

  32. Witkin, E.M. (1947), ‘Mutations in E. coli induced by chemical agents’, Cold Spring Harbor Symp. Quant. Biol., 12, 256–267.

    Article  CAS  Google Scholar 

  33. Clark, A.M. (1953), ‘The mutagenic activity of dyes in Drosophila melanogaster’, Amer. Nat., 87, 295–305.

    Article  CAS  Google Scholar 

  34. Auerbach, C. (1955), ‘The mutagenic action of pyronin-B’, Amer. Nat., 89, 241–245.

    Article  CAS  Google Scholar 

  35. Clark, A.M. (1958), The mutagenic action of pyronin in Drosophila, Zeitschr. indukt. Abst. Vererb. Lehre, 89, 123–130

    CAS  Google Scholar 

  36. Lerman, L.S. (1961), ‘Structural considerations in the interaction of DNA and acridines’, J. Mol. Biol., 3, 18–30.

    Article  PubMed  CAS  Google Scholar 

  37. Orgel, A. and Brenner, S. (1961), ‘Mutagenesis of bacteriophage T4 by acridines’ J. Mol. Biol., 3, 762–768.

    Article  PubMed  CAS  Google Scholar 

  38. Brenner, S., Barnett, L., Crick, F.C.H. and Orgel, A. (1961), ‘The theory of mutagenesis’, J. Mol. Biol., 3, 121–124.

    Article  CAS  Google Scholar 

  39. Hruska, F.E. and Danyluk, S.S. (1968), ‘An NMR study of the interactions of purine and pyrimidine derivatives with acridine orange’, Biochim. Biophys. Acta, 161, 250–252.

    Article  PubMed  CAS  Google Scholar 

  40. Lerman, L.S. (1964), ‘Acridine mutagens and DNA structure’, J. Cell Comp. Physiol., 64, Suppl. 1–18.

    Article  CAS  Google Scholar 

  41. Lerman, L.S. (1963), ‘The structure of the DNA-acridine complex’, Proc. Nat. Acad. Sci. U.S.A., 49, 94–102.

    Article  CAS  Google Scholar 

  42. Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E. and Inouye, M. (1966), ‘Frameshift mutations and the genetic code’, Cold Spring Harbor Symp. Quant. Biol., 31, 77–84.

    Article  PubMed  CAS  Google Scholar 

  43. Lindstrom, D.M. and Drake, J.W. (1970), ‘Mechanics of frameshift mutagenesis in bacteriophage T4: role of chromosome tips’, Proc. Nat. Acad. Sci. U.S.A., 65, 617–624.

    Article  CAS  Google Scholar 

  44. Newton, A., Masys, D., Leonard, E. and Wygal, D. (1972). ‘Association of induced frameshift mutagenesis and DNA replication in E. coli’, Nature New Biol., 236, 19–22.

    PubMed  CAS  Google Scholar 

  45. Sarabhai, A. and Lamfrom, H. (1969), ‘Mechanism of proflavin mutagenesis’, Proc. Nat. Acad. Sci. U.S.A., 63, 1196–1197.

    Article  CAS  Google Scholar 

  46. Magni, G.E., Borstel, R.C. von, and Sora, S. (1964), ‘Mutagenic action during meiosis and antimutagenic action during mitosis by 5-aminoacridine in yeast’, Mutation Res., 1, 227–230.

    Article  Google Scholar 

  47. Ames, B. and Whitfield, H. Jr. (1966), ‘Frameshift mutagenesis in Salmonella’, Cold Spring Harbor Symp. Quant. Biol., 31, 221–225.

    Article  PubMed  CAS  Google Scholar 

  48. Brusick, D.J. and Zeiger, E. (1972), ‘A comparison of chemically induced reversion patterns of Salmonella typhimurium and Saccharomyces cerevisiae mutants, using in vitro plate tests’, Mutation Res., 14, 271–275.

    Article  CAS  Google Scholar 

  49. Mailing, H.V. (1967), The mutagenicity of the acridine mustard (ICR-170) and the structurally related compounds in Neurospora, Mutation Res., 4, 265–274.

    Article  Google Scholar 

  50. Magni, G.E. and Puglisi, P.P. (1966), ‘Mutagenesis of supersuppressors in yeast’, Cold Spring Harbor Symp. Quant.Biol., 31, 699–704.

    Article  PubMed  CAS  Google Scholar 

  51. Munz, P. and Leupold, U. (1970), ‘Characterization of ICR-170-induced mutations in Schizosaccharomyces pombe’, Mutation Res., 9, 199–212.

    Article  PubMed  CAS  Google Scholar 

  52. Werenne, J. and Grosjean, H. (1965), ‘Effet de la proflavine sur les ARN de transfert’, Arch. Int. Physiol. Biochem., 73, 537–538.

    Google Scholar 

  53. Oeschger, N.S. and Hartman, P.E. (1970), ‘ICR-induced frameshift mutations in the histidine operon of Salmonella’, J. Bacter., 101, 490–504.

    CAS  Google Scholar 

  54. Bresler, S.E., Kalinin, V.L. and Perumov, D.A. (1968), ‘In activation and mutagenesis on isolated DNA. II. Kinetics of mutagenesis and efficiency of different mutagens’, Mutation Res., 5, 1–14.

    Article  PubMed  CAS  Google Scholar 

  55. Freese, E. and Strack, H.B. (1962), ‘Induction of mutations in transforming DNA by hydroxylamine’, Proc. Nat. Acad. Sci. U.S.A., 48, 1796–1803.

    Article  CAS  Google Scholar 

  56. Freese, E., Bautz-Freese, E. and Bautz, E. (1961), ‘Hydroxylamine as a mutagenic and inactivating agent’, J. Mol. Biol, 3, 133–143.

    Article  PubMed  CAS  Google Scholar 

  57. Tessman, I., Poddar, R.K. and Kumar, S. (1964), ‘Identification of the altered bases in mutated single-stranded DNA. I. In vitro mutagenesis by hydroxylamine, ethyl methanesulfonate and nitrous acid’, J. Mol. Biol., 9, 352–363.

    Article  PubMed  CAS  Google Scholar 

  58. Lawley, P.D. (1967), ‘Reaction of hydroxylamine at high concentration with deoxycytidine or with polycytidylic acid: evidence that substitution of amino groups in cytosine residues by hydroxylamine is a primary reaction and the possible relevance to hydroxylamine mutagenesis’, J. Mol. Biol., 24, 75–81.

    Article  CAS  Google Scholar 

  59. Schuster, H. and Wittmann, H.G. (1963), ‘The inactivation and mutagenic action of hydroxylamine on tobacco mosaic virus ribonucleic acid’, Virology, 19, 421–430.

    Article  PubMed  CAS  Google Scholar 

  60. Champe, S.P. and Benzer, S. (1962), ‘Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA’, Proc. Nat. Acad. Sci. U.S.A., 48, 532–546.

    Article  CAS  Google Scholar 

  61. Phillips, J., Adman, R., Brown, D. and Grossman, L. (1965), ‘The effects of hydroxylamine on polynucleotide templates for RNA-polymerase’, J. Mol. Biol., 12, 816–828.

    Article  PubMed  CAS  Google Scholar 

  62. Budowsky, E.I., Krivisky, A.S., Klebanova, L.M., Metlitskaya, A.Z., Turchinsky, M.F. and Savin, F.A. (1974), ‘The action of mutagens on MS2 phage and on its infective RNA. V. kinetics of the chemical and functional changes of the genome under hydroxylamine treatment’, Mutation Res., 24, 245–258.

    Article  PubMed  CAS  Google Scholar 

  63. Fraenkel-Conrat, H. and Singer, B. (1972), ‘The chemical basis for the mutagenicity of hydroxylamine and methoxyamine’, Bioehim. Biophys. Acta., 262, 264–270.

    Article  CAS  Google Scholar 

  64. Freese, E., Bautz, E., Bautz-Freese, E. (1961), ‘The chemical and mutagenic specificity of hydroxylamine’, Proc. Nat. Acad. Sci. U.S.A., 47, 845–855.

    Article  CAS  Google Scholar 

  65. Brenner, S., Barnett, L., Katz, E.R. and Crick, F.H.C. (1967), ‘UGA: a third nonsense triplet in the genetic code’, Nature, 213, 449–450.

    Article  PubMed  CAS  Google Scholar 

  66. Chu, B.C.F., Brown, D.M. and Burdon, M.G. (1973), ‘Effect of nitrogen and catalase on hydroxylamine and hydrazine mutagenesis’, Mutation Res., 20, 265–270.

    Article  PubMed  CAS  Google Scholar 

  67. Budovsky, E.I., Svertlov, E.D. and Monastyrskaya, G.S. (1971), ‘Mechanism of the mutagenic action of hydroxylamine and O-methylhydroxylamine. IV. Reaction of hydroxylamine and O-methylhydroxylamine with the adenine nucleus’, Biochim. Biophys. Acta, 246, 320–334.

    Article  Google Scholar 

  68. Freese, E., Bautz-Freese, E. and Stuart, G. (1966), The oxygen-dependent reaction of hydroxylamine with nucleotides and DNA’, Biochim. Biophys. Acta, 123, 17–25.

    Article  PubMed  CAS  Google Scholar 

  69. Tessman, I., Ishina, H. and Kumar, S. (1965), “Mutagenic effects of hydroxylamine in vivo’, Science, 148, 507–508.

    Article  PubMed  CAS  Google Scholar 

  70. Budowsky, E.I. (1975), ‘The effect of higher structures of macromolecules on the genetic consequences of the action of mutagens’, Mutation Res., 27, 1–6.

    Article  PubMed  CAS  Google Scholar 

  71. Levisohn, R. (1970), ‘Phenotypic reversion by hydroxylamine: A new group of suppressible phage T4 rII mutants’, Genetics, 64, 1–9.

    PubMed  CAS  Google Scholar 

  72. Mukai, F. and Troll, W. (1969), ‘The mutagenicity and initiating activity of some aromatic amine metabolites’, Ann. N. Y. Acad. Scl., 163, 828–836.

    Article  CAS  Google Scholar 

  73. Osborn, M., Person, S., Phillips, S. and Funk, F. (1967), ‘A determination of mutagen specificity in bacteria using nonsense mutants of bacteriophage T4’, J. Mol. Biol., 26, 437–447.

    Article  PubMed  CAS  Google Scholar 

  74. Shukla, T.T. (1972), ‘Analysis of mutagen specificity in Drosophila melanogaster’, Mutation Res., 16, 363–371.

    Article  PubMed  CAS  Google Scholar 

  75. Guglielminetti, R., Bonatti, St., Loprieno, N. and Abbondandolo, A. (1967), ‘Analysis of the mosaicism induced by hydroxylamine and nitrous acid in Schizosaccharomyces pombe’, Mutation Res., 4, 441–447.

    Article  PubMed  CAS  Google Scholar 

  76. Mailing, H.V. (1966), ‘Hydroxylamine as a mutagenic agent for Neurospora crassa’, Mutation Res., 3, 470–476.

    Article  Google Scholar 

  77. Putrament, A., Baranowska, H. and Pacheka, J. (1973), ‘Mutagenic action of hydroxylamine and methoxyamine on yeast. I. Hydroxylamine’, Molec. Gen. Genetics, 122, 61–72.

    Article  CAS  Google Scholar 

  78. Vries, G. de., and Grosjean, H. (1965), ‘Effet de l’hydroxylamine sur la capacité acceptrice des acides ribonucléiques de transfert’, Arch. Int. Physiol., 73, 524–525.

    Google Scholar 

  79. Rosenkranz, H.S., and Bendich, A.J. (1964), ‘Studies on the bacteriostatic action of hydroxylamine’, Biochim. Biophys. Acta, 87, 40–53.

    PubMed  CAS  Google Scholar 

  80. Somers, C.E. and Hsu, T.C. (1962), ‘Chromosome damage induced by hydroxylamine in mammalian cells’, Proc. Nat. Acad. Sci. U.S.A., 48, 937–943.

    Article  CAS  Google Scholar 

  81. Borenfreund, E., Krim, M., and Bendich, A. (1964), ‘Chromosomal aberrations induced by hyponitrite and hydroxylamine derivatives’, J. Nat. Cancer Inst., 32, 667–679.

    PubMed  CAS  Google Scholar 

  82. Lingens, F. (1964), Erzeugung von Mangelmutanten von Escherichia coli mit Hilfe von Hydrazin und Hydrazinderivaten. Z. Naturf., 19b, 151–156.

    CAS  Google Scholar 

  83. Brown, D.M., MacNaught, A.D. and Schell, P.D. (1966), ‘The chemical basis of hydrazine mutagenesis’, Biochem. Biophys. Res. Comm., 24, 961–971.

    Article  Google Scholar 

  84. Darlington, C.D., and McLeish, J. (1951), ‘Action of maleic hydrazide on the cell’, Nature, 167, 407–408.

    Article  PubMed  CAS  Google Scholar 

  85. Shapiro, R. and Weisgras, J.M. (1970), ‘Bisulfite-catalyzed transamination of cytosine and cytidine’, Biochem. Biophys. Res. Comm., 40, 839–843.

    Article  PubMed  CAS  Google Scholar 

  86. Shapiro, R., Braverman, B., Louis, J.B. and Servis, R.E. (1973), ‘Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite’, J. Biol. Chem., 248, 4060–4064.

    PubMed  CAS  Google Scholar 

  87. Hayatsu, H. and Miura, A. (1970), ‘The mutagenic action of sodium bisulfite’, Biochem. Biophys. Res. Comm., 39, 156–160.

    Article  PubMed  CAS  Google Scholar 

  88. Summers, I.A. and Drake, J.W. (1971), ‘Bisulfite mutagenesis in bacteriophage T4’, Genetics, 68, 603–607.

    PubMed  CAS  Google Scholar 

  89. Mukai, F., Hawryluk, I. and Shapiro, R. (1970), ‘The mutagenic specificity of sodium bisulfite’, Biochem. Biophys. Res. Comm., 39, 983–988.

    Article  PubMed  CAS  Google Scholar 

  90. Dorange, J.L. and Dufuy, P. (1972), ‘Mise en évidence d’une action mutagène du sulphite de sodium sur la levure’, C.R. Acad. Sci. Paris Ser. D., 274, 2798–2800.

    CAS  Google Scholar 

  91. Chambers, R.W., Agyagi, S.Y., Furukawa, Y., Zawadska, H., Bhanet, O.S. (1973), ‘Inactivation of valine acceptor activity by a C into U missense change in the anticodon of yeast valine transfer ribonucleic acid’, J. Biol. Chem., 248, 5549–5551.

    PubMed  CAS  Google Scholar 

  92. Baker, R. and Tessman, I. (1968), ‘Different mutagenic specificities in phages S13 and T4: in vivo treatment with N-methyl-NN’-nitro-N-nitrosoguanidine’, J. Mol. Biol., 35, 439–448.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Charlotte Auerbach

About this chapter

Cite this chapter

Auerbach, C. (1976). Chemical mutagens: purines; base analogues; acridines; hydroxylamine; hydrazine; bisulphite. Reversion analysis. In: Mutation research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3103-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3103-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-11280-5

  • Online ISBN: 978-1-4899-3103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics