Skip to main content

Interaction between particles and fluids in a gravitational field

  • Chapter
Particle Size Measurement

Part of the book series: Powder Technology Series ((PTS))

Abstract

The settling behaviour of particles in a fluid is widely used for particle size determination. The simplest case to consider is the settling velocity, under gravity, of a single sphere in a fluid of infinite extent. Many experiments have been carried out to determine the relationship between settling velocity and particle size. A unique relationship between drag factor and Reynolds number has been found, and this relationship reduces to a simple equation, the Stokes equation, which applies at low Reynolds number, relating settling velocity and particle size. In this chapter this equation is developed and its limits explored. It is shown that, for the purpose of particle size measurement, the time for a particle to reach a steady velocity (the acceleration time) is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lorentz, H. (1906), Abh. u. Th. Phys., 82, 541.

    Google Scholar 

  2. Happel, J. and Brenner, H. (1965), Low Reynolds Number Hydrodynamics, Prentice Hall (1951).

    Google Scholar 

  3. Hawksley, P.G.W. (1951), BCURA Bull. 15, 4.

    Google Scholar 

  4. Cunningham, E. (1910), Proc. R. Soc., A83, 357.

    Google Scholar 

  5. Davies, C.N. (1954), Proc. Phys. Soc., 57, 259.

    Article  Google Scholar 

  6. Lapple, C.E. (1950), Chemical Engineering Handbook (ed. J.M. Perry), McGraw-Hill, NY.

    Google Scholar 

  7. Green, M.L. and Lane, W.R. (1957), Particulate Clouds: Dusts, Smokes and Mists, Spon, p. 58.

    Google Scholar 

  8. Boothroyd, R.G. (1971), Flowing Gas Solids Suspensions, Chapman & Hall, London.

    Google Scholar 

  9. Fuchs, N.A. (1964), Mechanics of Aerosols, Trans., (ed. C.N. Davies), Pergamon, Oxford.

    Google Scholar 

  10. Einstein, A. (1906), Ann. Phys. Leipzig, 19, 289; (1911), 34, 591.

    Article  MATH  Google Scholar 

  11. Kynch, G.J. (1954), B. J. appl. Phys., suppl. 3.

    Google Scholar 

  12. Oseen, C.W. (1927), Neuere Methoden und Ergebrisse in der Hydrodynamik, Leipzig Akademische Verlag.

    Google Scholar 

  13. Proudman, I. and Pearson, J.R.A. (1957), J. Fluid. Mech., 2, 237.

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldstein, S. (1938), Modern Developments in Fluid Dynamics, Clarendon Press.

    Google Scholar 

  15. Schillar, L. and Nauman, A.Z. (1933), Ver. dt. Ing., 77, 318.

    Google Scholar 

  16. Davies, C.N. (1947), Trans. Inst. Chem. Engrs, suppl. 25, 39.

    Google Scholar 

  17. Heywood, H. (1962), Proc. Symp. on the Interaction between Fluids and Particles, Inst. Chem. Engrs, London.

    Google Scholar 

  18. Levich, V.G. (1962), Physiochemical Hydrodynamics, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  19. Heiss, F. and Coull, J. (1952), Chem. Eng. Prog, 48, 3, 133–40.

    Google Scholar 

  20. Pettyjohn, E.A. and Christiansen, E.B. (1968), Chem. Eng. Prog, 44, 157.

    Google Scholar 

  21. Kynch, G.J. (1959), J. Fluid. Mech., 5, 193.

    Article  MathSciNet  MATH  Google Scholar 

  22. Famularo, J. (1962), Engng. Sci. D. Thesis, New York Univ.

    Google Scholar 

  23. Burgers, J.M. (1941), Proc. K. ned. Akad. Wet., 44, 1045; (1942), 45, 9.

    MathSciNet  MATH  Google Scholar 

  24. Maude, A.D. and Whitmore, R.L. (1958), B. J. appl. Phys., 4, 477.

    Article  Google Scholar 

  25. Richardson, J.F. and Zaki, W.N. (1954), Chem. Eng. Sci., 3, 65.

    Article  Google Scholar 

  26. Brinkman, H.C. (1947), Appl. Sci. Res., A1, 27; (1948), A1, 81; (1949), A2, 190.

    Google Scholar 

  27. Steinour, H.H. (1944), Ind. Engng. Chem. 36, 618, 840, 901.

    Article  Google Scholar 

  28. Powers, T.C. (1939), Proc. Am. Concr. Inst., 35, 465.

    Google Scholar 

  29. Kaye, B.H. and Boardman, R.P. (1962), Proc. Symp. Interaction between Fluids and Particles, Inst. Chem. Engrs., London.

    Google Scholar 

  30. Johne, R. (1966), Diss. Karlsruhe (1965); also Chemie-Ing-Tech. (1966), 38, 428–30.

    Article  Google Scholar 

  31. Dollimore, D. and Heal, G.R. (1962), J. appl. Chem., 12, 445.

    Article  Google Scholar 

  32. Ramakrishna, V. and Rao, S.R. (1965), J. appl. Chem., 15, 473.

    Article  Google Scholar 

  33. Dollimore, D. (1972), J. Powder Technol., 8, 207–120.

    Article  Google Scholar 

  34. Rayleigh, Lord (1892), Phil. Mag., 5, B4, 59.

    Google Scholar 

  35. Stokes, Sir G.G. (1891), Mathematical and Physical Paper III, Cambridge University Press.

    Google Scholar 

  36. Moore, D.W. and Orr, C. Jr. (1973), Powder Technol., 8, 13–18.

    Article  Google Scholar 

  37. Muta, A. and Watanabe, S. (1970), Proc. Conf. Particle Size Analysis (eds. M.J. Groves and J.L. Wyatt-Sargent), Soc. Anal. Chem., Bradford, pp. 178–93, 196, 197.

    Google Scholar 

  38. Allen, T. (1970), ibid., Discussion, pp. 194, 195, 198.

    Google Scholar 

  39. Allen, T. and Baudet, M.G. (1977), Powder Technol., 18, 131–8.

    Article  Google Scholar 

  40. Davies, R. and Kaye, B.H. (1971/2), Powder Technol., 5, 61–68.

    Article  Google Scholar 

  41. Koglin, B. (1970), Proc. Conf. Particle Size Analysis (eds. M.J. Groves and J.L. Wyatt-Sargent), Soc. Anal. Chem., Bradford, pp. 223–35.

    Google Scholar 

  42. Davies, R. and Kaye, B.H. (1970), ibid, pp. 207–22.

    Google Scholar 

  43. Jovanovic, D.S. (1965), Kolloid Z., Polymere, 203, 1, 42–56.

    Article  Google Scholar 

  44. Jayaweera, K.O.L.F., Mason, B.J. and Slack, G.W. (1964), J. Fluid Mech., 20, 121–8.

    Article  MATH  Google Scholar 

  45. Barford, N. (1972), Powder Technol., 6, 1, 39–44.

    Article  Google Scholar 

  46. Dollimore, D. and Griffiths, D.L. (1960), Proc. 3rd Int. Cong. Surface Activity, Cologne, V2, Section B, 674.

    Google Scholar 

  47. Christian, J.R., Dollimore, D. and Horridge, T.A. (1970), J. Phys. E, 3, 744.

    Article  Google Scholar 

  48. Sarmiento, G. and Uhlherr, P.H.T. (1977), Proc. 5th Austral Chem. Eng. Conf., Canberra, 296.

    Google Scholar 

  49. Dollimore, D. and McBride, G.B. (1973), Powder Technol., 8, 207–12.

    Article  Google Scholar 

  50. Ramakrishna, V. and Rao, S.R. (1966), J. appl. Chem., 15, 473.

    Article  Google Scholar 

  51. Ramakrishna, V. (1970), Proc. Conf. Particle Size Analysis (eds. M.J. Groves and J.L. Wyatt-Sargent), Soc. Anal. Chem., Bradford, p. 206.

    Google Scholar 

  52. Pierce, T.J. (1970), ibid, p. 205.

    Google Scholar 

  53. Davies, L., Dollimore, D. and McBride, G.B. (1977), Powder Technol., 16, 45–49.

    Article  Google Scholar 

  54. Dollimore, D. and Horridge, T.A. (1971), Trans. Br. Ceramic Soc., 70, 191.

    Google Scholar 

  55. Davies, L., Dollimore, D. and Sharpe, J.H. (1916), Powder Technol., 13, 123–32.

    Article  Google Scholar 

  56. Dollimore, D. and Owens, N.F. (1972), Proc. 6th Int. Cong. Surface Activity, Zurich, (cit. [55]).

    Google Scholar 

  57. Dixon, D.C., Buchanon, J.E. and Souter, P. (1977), Powder Technol., 18, 283–4.

    Article  Google Scholar 

  58. Davies, L. and Dollimore, D. (1977), ibid, 285–7.

    Google Scholar 

  59. Whitmore, R.L. (1957), J. Inst. Fuel, 30, 238.

    Google Scholar 

  60. Capes, C.E. (1974), Powder Technol., 10, 303–6.

    Article  Google Scholar 

  61. Davies, L. and Dollimore, D. (1977), Powder Technol., 16, 59–61.

    Article  Google Scholar 

  62. Davies, L. and Dollimore, D. (1978), Powder Technol., 19, 1–6.

    Article  Google Scholar 

  63. Sarmiento, G. and Uhlherr, P.H.T. (1979), Powder Technol., 22, 139–42.

    Article  Google Scholar 

  64. Michaels, A.S. and Bolger, J.C. (1962), Ind. Engng Fund., 1, 24.

    Article  Google Scholar 

  65. Dorn, E. (1880), Wied, Ann. 10, 46 (cited by Abramson, H.A. (1934), Electrokinetic Phenomena, Chemical Catal. Co., NY).

    Article  Google Scholar 

  66. Elton, G.A.H. (1948), Electroviscosity 1, Proc. R. Soc., A194, 259.

    Google Scholar 

  67. Elton, G.A.H. (1948), Electroviscosity 2, Proc. R. Soc., A194, 275.

    Google Scholar 

  68. Elton, G.A.H. (1949), Electroviscosity 3, Proc. R. Soc., A197, 568.

    Google Scholar 

  69. Dulin, C.I. and Elton, G.A.H. (1952), J. Chem. Soc., 286.

    Google Scholar 

  70. Elton, G.A.H. and Hirschler, F.G. (1954), B. J. appl. Phys., suppl. 3, S60.

    Google Scholar 

  71. Elton, G.A.H. and Hirschler, F.G. (1962), J. Chem. Soc., 2953.

    Google Scholar 

  72. Booth, F. (1950), Proc. R. Soc., A203, 533.

    MathSciNet  Google Scholar 

  73. Booth, F. (1954), J. Chem. Phys., 22, 1956.

    Article  Google Scholar 

  74. Pavlik, R.E. and Sansone, E.B. (1973), Powder Technol., 8, 159–64.

    Article  Google Scholar 

  75. Sansone, E.B. and Civic, T.M. (1975), Powder Technol., 12, 1, 11–18.

    Article  Google Scholar 

  76. Brugger, K. (1976), Powder Technol., 14, 187–8.

    Article  Google Scholar 

  77. Dollimore, D. and McBride, G.B. (1970), Proc. Conf Particle Size Analysis (eds. M.J. Groves and J.L. Wyatt-Sargent), Soc. Anal. Chem., Bradford, pp. 199–206.

    Google Scholar 

  78. Siano, D.B. (1979), J. Colloid Interfac Sci., 68, 1, 111–27.

    Article  Google Scholar 

  79. Richardson, J.F. and Zaki, W.N. (1954), Trans. Inst. Chem. Eng., 32, 35.

    Google Scholar 

  80. Scott, K.J. (1968), Ind. Chem. Fund., 7, 484.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 T. Allen

About this chapter

Cite this chapter

Allen, T. (1981). Interaction between particles and fluids in a gravitational field. In: Particle Size Measurement. Powder Technology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3063-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3063-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-15410-2

  • Online ISBN: 978-1-4899-3063-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics