Skip to main content

Determination of pore size distribution by gas adsorption

  • Chapter
  • 608 Accesses

Part of the book series: Powder Technology Series ((PTS))

Abstract

Pore size and size distribution have significant effects over a wide range of phenomena from the adsorbency of fine powders in chemical catalysis to the frost resistance of bricks. Due to this, pore size measurements have been described using a wide range of techniques and apparatus. Pore surface area is generally accepted as being the difference between the area of the surface envelope of the particle and its total surface area. The pores may be made up of fissures and cavities in the particle: they may be V-shaped, i.e. wide-necked; or ‘ink-bottle’ pores, i.e. narrow-necked. In order that their volume distribution may be determined, it is necessary that they are not totally enclosed and that the molecules used for measurement purposes may enter through the neck. The presence and extent of small open pores may be determined by finding the volume of a powder by immersing it in mercury and finding the volume displacement, then finding the volume in a gas pyknometer, using helium as the gas. Since mercury does not wet most solids it leaves the pores unfilled, and the difference between the two volumes is the pore volume. Closed pores may be evaluated by grinding the powder which opens out some of the pores, thus decreasing the apparent solid volume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gregg, G.J. and Sing, K.S.W. (1967), Adsorption, Surface Area and Porosity, Academic Press, NY.

    Google Scholar 

  2. de Boer, J.H. (1958), The Structure and Properties of Porous Materials, Butterworths, p. 68.

    Google Scholar 

  3. Oulton, T.D. (1948), J. Phys. Colloid Chem., 52, 1296.

    Article  Google Scholar 

  4. Wheeler, A. (1955), Catalysis, 2, Reinhold, NY, p. 118.

    Google Scholar 

  5. Schüll, C.G. (1948), J. Am. Chem. Soc., 70, 1405.

    Article  Google Scholar 

  6. Barrett, E.P., Joyner, L.G. and Halenda, P.O. (1951), J. Am. Chem. Soc., 73, 373–80.

    Article  Google Scholar 

  7. Burgess, C.G.V. and Everett, D.H. (1970), J. Colloid Interfac. Sci., 33, 611–14.

    Article  Google Scholar 

  8. Pierce, C. (1953), J. Phys. Chem., 57, 149–52.

    Article  Google Scholar 

  9. Joyner, L.G., Barrett, E.P. and Skold, R. (1951), J. Am. Chem. Soc., 73, 3155.

    Article  Google Scholar 

  10. Cranston, R.W. and Inkley, F.A. (1957), Advances in Catalysis (ed. A. Farkas), 9, Academic Press, NY, pp. 143–54.

    Google Scholar 

  11. Dollimore, D. and Heal, G.R. (1964), J. appl. Chem., 14, 109.

    Article  Google Scholar 

  12. Innes, W.B. (1957), Analyt. Chem., 29, 7, 1069–73.

    Article  Google Scholar 

  13. Roberts, B.F. (1967), J. Colloid Interfac. Sci., 23, 266–73.

    Article  Google Scholar 

  14. Halsey, G.D. (1948), J. Chem. Phys., 16, 931.

    Article  Google Scholar 

  15. Pierce, C. (1968), J. Phys. Chem., 72, 3673.

    Article  Google Scholar 

  16. de Boer, J.H. et al. (1966), J. Colloid Interfac. Sci., 21, 405–14.

    Article  Google Scholar 

  17. Mather, R.R. and Sing, K.S.W. (1977), J. Colloid Interfac. Sci., 60, 1, 60–66.

    Article  Google Scholar 

  18. Dubinin, M.M. (1967), J. Colloid Interfac. Sci., 23, 487–99.

    Article  Google Scholar 

  19. Bering, B.P., Dubinin, M.M. and Serpinsky, V.V. (1972), J. Colloid Interfac. Sci., 38, 1, 184–94.

    Article  Google Scholar 

  20. Brunauer, S., Mikhail, R.S. and Bodor, E.E. (1967), J. Colloid Interfac. Sci., 24, 451.

    Article  Google Scholar 

  21. Brunauer, S., Mikhail, R.S. and Bodor, E.E. (1967), J. Colloid Interfac. Sci., 25, 353.

    Article  Google Scholar 

  22. Bodor, E.E., Odler, I. and Skalny, J. (1970), J. Colloid Interfac. Sci., 32, 2, 367–70.

    Article  Google Scholar 

  23. Ihm, S.K. and Ruckenstein, E. (1977), J. Colloid Interfac. Sci., 61, 1, 146–59.

    Article  Google Scholar 

  24. Lamond, T.G. (1976), J. Colloid Interfac. Sci., 56, 1, 116–22.

    Article  Google Scholar 

  25. Sing, K.S.W. (1967), Chemy. Ind., 829.

    Google Scholar 

  26. Sing, K.S.W. (1970), Proc. Int. Symp. Surface Area Determination (eds D.M. Everett and R.H. Ottewill), Butterworths, London, p. 25.

    Google Scholar 

  27. Sing, K.S.W. (1971), J. Oil Colour Chem. Assoc., 54, 731.

    Google Scholar 

  28. Sing, K.S.W. (1973), Special Periodical Report, Colloid Science, 1, Chem. Soc., London, p. 1.

    Google Scholar 

  29. Sing, K.S.W. (1976), Characterisation of Powder Surfaces (eds G.D. Parfitt and K.S.W. Sing), Academic Press.

    Google Scholar 

  30. Lippens, B.C., Linsen, B.G. and de Boer, J.H. (1964), J. Catalysis, 3, 32–37.

    Article  Google Scholar 

  31. de Boer, J.H. and Lippens, B.C. (1964), J. Catalysis, 3, 38–43.

    Article  Google Scholar 

  32. Lippens, B.C. and de Boer, J.H. (1964), ibid., 44–49.

    Google Scholar 

  33. de Boer, J.H., Van Den Heuval, A. and Linsen, B.G. (1964), ibid., 268–73.

    Google Scholar 

  34. Lippens, B.C. and de Boer, J.H. (1965), J. Catalysis, 4, 319–23.

    Article  Google Scholar 

  35. de Boer, J.H., Linsen, B.G. and Osinga, Th.J. (1965), ibid., 643–8.

    Google Scholar 

  36. de Boer, J.H. et al. (1965), ibid., 649–53.

    Google Scholar 

  37. de Boer, J.H. et al. (1967), J. Catalysis, 7, 135–9.

    Article  Google Scholar 

  38. Brockhoff, J.C.P. and de Boer, J.H. (1967), J. Catalysis, 9, 8–14.

    Article  Google Scholar 

  39. Brockhoff, J.C.P. and de Boer, J.H. (1967), ibid., 15–27.

    Google Scholar 

  40. Brockhoff, J.C.P. and de Boer, J.H. (1968), J. Catalysis, 10, 153–65.

    Article  Google Scholar 

  41. Brockhoff, J.C.P. and de Boer, J.H. (1968), ibid., 368–74.

    Google Scholar 

  42. Brockhoff, J.C.P. and de Boer, J.H. (1968), ibid., 377–90.

    Google Scholar 

  43. Brockhoff, J.C.P. and de Boer, J.H. (1968), ibid., 391–400.

    Google Scholar 

  44. de Boer, J.H. et al. (1968), J. Catalysis, 11, 46–53.

    Article  Google Scholar 

  45. Bhambhami, M.R. et al. (1972), J. Colloid Interfac. Sci., 38, 1, 109–17.

    Article  Google Scholar 

  46. Brunauer, S., Mikhail, R.S. and Bodor, E.E. (1968), J. Colloid Interfac. Sci., 26, 45.

    Article  Google Scholar 

  47. Brunauer, S. (1970), Chem. Engng Progr. Symp., 96, 65, 1–10.

    Google Scholar 

  48. Sing, K.S.W. (1968), Chemy. Ind., 1520.

    Google Scholar 

  49. Marsh, H. and Rand, B. (1970), J. Colloid Interfac. Sci., 33, 3, 478–9.

    Article  Google Scholar 

  50. Kiselev, A.V. (1945), USP Khim., 14, 367.

    Google Scholar 

  51. Brunauer, S. (1976), Pure Appl. Chem., 48, 401–5.

    Article  Google Scholar 

  52. Mikhail, R.S.L., Brunauer, S. and Bodor, E.E. (1968), J. Colloid Interfac. Sci., 26, 45–53.

    Article  Google Scholar 

  53. Mikhail, R.S.L., Brunauer, S. and Bodor, E.E. (1968), ibid., 54–61.

    Google Scholar 

  54. Aylmore, L.A.G. (1974), J. Colloid Interfac. Sci., 46, 3, 410–6.

    Article  Google Scholar 

  55. Havard, D.C. and Wilson, R. (1976), J. Colloid Interfac. Sci., 57, 2, 276–88.

    Article  Google Scholar 

  56. Rand, B. (1974), J. Colloid Interfac. Sci., 48, 2, 183–6.

    Article  Google Scholar 

  57. Ross, S. and Oliver, J.P. (1964), On Physical Adsorption, Wiley, NY.

    Google Scholar 

  58. Mikhail, R.S.L. and Shebl, F.A. (1972), J. Colloid Interfac. Sci., 38, 1, 35–44.

    Article  Google Scholar 

  59. Mieville, R.L. (1972), J. Colloid Interfac. Sci., 41, 2, 371–3.

    Article  Google Scholar 

  60. Hagymassy, J. Jr. et al. (1972), J. Colloid Interfac. Sci., 38, 1, 20–34.

    Article  Google Scholar 

  61. Radjy, F. and Sellevold, E.J. (1972), J. Colloid Interfac. Sci., 39, 2, 367–88.

    Article  Google Scholar 

  62. Hanna, K.M. et al. (1973), J. Colloid Interfac. Sci., 45, 1, 27–54.

    Article  MathSciNet  Google Scholar 

  63. Gregg, S.J., Nashed, S. and Malik, MX (1973), Powder Technol., 7, 15–19.

    Article  Google Scholar 

  64. Giles, C.H. et al. (1978), Proc. Conf. Structure of Porous Solids, Neuchatel, Switzerland, Swiss Chem. Soc.

    Google Scholar 

  65. Everett, D.H. et al. (1974), J. appl. Chem. Biotechnol., 24, 199.

    Article  Google Scholar 

  66. Tsunoda, R. (1978), Bull. Chem. Soc. Japan, 51, 1, 341.

    Article  Google Scholar 

  67. Kurz, H.P. (1912), Powder Technol., 6, 167–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 T. Allen

About this chapter

Cite this chapter

Allen, T. (1981). Determination of pore size distribution by gas adsorption. In: Particle Size Measurement. Powder Technology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3063-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3063-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-15410-2

  • Online ISBN: 978-1-4899-3063-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics