Skip to main content

Other methods for determining surface area

  • Chapter
Particle Size Measurement

Part of the book series: Powder Technology Series ((PTS))

  • 628 Accesses

Abstract

The most widely used method for surface-area determination is low-temperature gas adsorption, particularly nitrogen and krypton at liquid-nitrogen temperature. Most gases can and have been used, and these include water vapour at room temperature and carbon dioxide at room temperature and at −78°C. The problems that arise when one deviates from the standard conditions are: what is the applicable molecular area and what is the correct theoretical model to use? The first question is usually resolved by accepting published values or carrying out experiments to determine molecular area by comparison with nitrogen adsorption at liquid-nitrogen temperature. Since there is no unanimity in published data, the second procedure is probably preferable. The second question is usually resolved from an examination of the isotherm, the BET or the Langmuir equation being then used. When coverage is very low, as with carbon dioxide at room temperature, the Freundlich equation may be applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, N.K. (1941), The Physics and Chemistry of Surfaces, Oxford University Press.

    Google Scholar 

  2. Rayleigh, Lord (1899), Phil Mag., 48, 321.

    Google Scholar 

  3. Pockels, A. (1891), Nature, 43, 437.

    Google Scholar 

  4. Langmuir, I. (1917), J. Am. Chem. Soc., 39, 1848.

    Article  Google Scholar 

  5. Linnar, E.R. and Williams, A.P. (1950), J. Phys. Colloid Chem., 54, 605.

    Article  Google Scholar 

  6. Vold, M.J. (1952), J. Colloid Sci., 7, 196.

    Article  Google Scholar 

  7. Kipling, J.J. and Wright, E.H.M. (1963), J. Chem. Soc., 3382.

    Google Scholar 

  8. Kipling, J.J. and Wright, E.H.M. (1964), ibid., 3535.

    Google Scholar 

  9. McBain, J.D. and Dunn, R.C. (1948), J. Colloid Sci., 3, 308.

    Google Scholar 

  10. Orr, C. and Dallavalle, J.M. (1959), Fine Particle Measurement, Macmillan, NY.

    Google Scholar 

  11. Ward, A.F.H. (1946), Trans. Faraday Soc., 42, 399.

    Article  Google Scholar 

  12. Allen, T. and Patel, R.M. (1971), J. Colloid Interfac. Sci., 35, 4, 647–55.

    Article  Google Scholar 

  13. Allen, T. and Patel, R.M. (1971), Particle Size Analysis, Soc. Analyt. Chem., London.

    Google Scholar 

  14. Allen, T. and Patel, R.M. (1970), J. Appl. Chem., 20, 165–71.

    Article  Google Scholar 

  15. Harkins, W.D. and Gans, D.M. (1931), J. Am. Chem. Soc., 53, 2804.

    Article  Google Scholar 

  16. Harkins, W.D. and Gans, D.M. (1932), J. Phys. Chem., 36, 86.

    Article  Google Scholar 

  17. Russell, A.S. and Cochran, C.N. (1950), Ind. Engng Chem., 42, 1332.

    Article  Google Scholar 

  18. Harkins, W.D. and Jura, G. (1944), Chem. Phys., 66, 1366.

    Google Scholar 

  19. Freundlich, H. (1907), Z. Phys. Chem., 57, 385.

    Google Scholar 

  20. Linnar, E.R. and Gortner, R.A. (1935), J. Phys. Chem., 39, 35–67.

    Article  Google Scholar 

  21. Traube, I. (1891), Ann. Phys., Liepzig, 265, 27.

    Google Scholar 

  22. Holmes, H.N. and McKelvey, J.B. (1928), J. Phys. Chem., 32, 1522.

    Article  Google Scholar 

  23. Harkins, W.D. and Dahlstrom, R. (1930), Ind. Engng Chem., 22, 897.

    Article  Google Scholar 

  24. Langmuir, I. (1917), Trans. Faraday Soc., 42, 399.

    Google Scholar 

  25. Adamson, A. W. (1963), Physical Chemistry of Surfaces, Interscience, NY.

    Google Scholar 

  26. Weissberger, A. et al. (1955), Organic Solvents, Interscience, NY.

    Google Scholar 

  27. de Boer, J.H. (1953), The Dynamical Characteristics of Adsorption, Princeton University Press.

    Google Scholar 

  28. Berthier, P., Kerlan, L. and Courty, C. (1858), C.r. Acad. Sci., Paris, 246, 1851.

    Google Scholar 

  29. Greenhill, E.B. (1949), Trans. Faraday Soc., 45, 625.

    Article  Google Scholar 

  30. Krasnovskii, A.A. and Gurevich, T.N. (1949), Chem. Abs., 43, 728.

    Google Scholar 

  31. Innes, W.B. and Rowley, H.H. (1947), J. Phys. Chem., 51, 1172.

    Article  Google Scholar 

  32. Hirst, W. and Lancaster, J.K. (1951), Trans. Faraday Soc., 47, 315.

    Article  Google Scholar 

  33. Hutchinson, E. (1947), Trans. Faraday Soc., 43, 439.

    Google Scholar 

  34. Gregg, S.J. (1947), Symp. Particle Size Analysis, Trans. Inst. Chem. Eng., London, 25, 40–6.

    Google Scholar 

  35. Crisp, D.J. (1956), J. Colloid Sci., 11, 356.

    Article  Google Scholar 

  36. Smith, H.A. and Fusek, J.F. (1946), J. Am. Chem. Soc., 68, 229.

    Article  Google Scholar 

  37. Smith, H.A. and Hurley, R.B. (1949), J. Phys. Colloid Chem., 53, 1409.

    Article  Google Scholar 

  38. Kipling, J.J. and Wright, E.H.M. (1962), J. Chem. Soc., 855, 3382–9.

    Google Scholar 

  39. Maron, S.H., Ulevith, I.N. and Elder, M.E. (1949), Analyt. Chem., 21, 691.

    Article  Google Scholar 

  40. Hanson, R.S. and Clampitt, B.H. (1954), J. Phys. Chem., 58, 908.

    Article  Google Scholar 

  41. Bartell, F.E. and Sloan, C.K. (1929), J. Am. Chem. Soc., 51, 1637.

    Article  Google Scholar 

  42. Ewing, W.W. and Rhoda, R.N. (1951), Analyt. Chem., 22, 1453.

    Article  Google Scholar 

  43. Candler, C. (1951), Modern Interferometers, Hilger, London.

    Google Scholar 

  44. Groszek, A.J. (1968), SCI Monograph, No. 28, 174.

    Google Scholar 

  45. Flory, P.J. (1953), Principles of Polymer Chemistry, Cornhill University Press, Ithaca, p. 579.

    Google Scholar 

  46. Morawetz, H. (1965), Macro molecules in Solution, Interscience, NY.

    Google Scholar 

  47. Jenkel, E. and Rumbach, B. (1951), Z. Electrochem., 55, 612.

    Google Scholar 

  48. Habden, J.F. and Jellinek, H.H.G. (1953), J. Polymer Sci., 11, 365.

    Article  Google Scholar 

  49. Frisch, H.C. and Simha, R. (1954), J. Phys. Chem., 58, 507.

    Article  Google Scholar 

  50. Jellinek, H.H.G. and Northey, H.L. (1954), J. Polymer Sci., 14, 583.

    Article  Google Scholar 

  51. Eltekov, Yu. A. (1970), Surface Area Determination, Butterworths, pp. 295–8.

    Google Scholar 

  52. Kolthoff, I.M. and MacNevin, W.N. (1937), J. Am. Chem. Soc., 59, 1639.

    Article  Google Scholar 

  53. Japling, D.W. (1952), J. Appl. Chem., 2, 642.

    Article  Google Scholar 

  54. Giles, G.H., Silva, A.P.D. and Trivedi, A.S. (1970), Surface Area Determination (D.H. Everett and R.H. Ottewill eds), Butterworths, p. 317.

    Google Scholar 

  55. Padday, J.F. (1970), ibid., pp. 331–7.

    Google Scholar 

  56. Lyklema, J. and Van der Hul, H.J. (1970), ibid., pp. 341–54.

    Google Scholar 

  57. Lennard-Jones, J.E. and Devonshire, A.F. (1937), Proc. R. Soc., 163A, 53.

    Google Scholar 

  58. Brillouin, L. (1938), J. Phys., 9, 7, 462.

    Google Scholar 

  59. Michand, F. (1939), J. Chim. Phys., 36, 23.

    Google Scholar 

  60. Bangham, D.H. and Razouk, R.I. (1937), Trans. Faraday Soc., 33, 1459.

    Article  Google Scholar 

  61. Bangham, D.H. and Razouk, R.I. (1938), Proc. R. Soc., 166, 572.

    Article  Google Scholar 

  62. Razouk, R.I. (1941), J. Phys. Chem., 45, 179.

    Article  Google Scholar 

  63. Harkins, W.D. (1919), Proc. natn. Acad. Sci., 5, 562.

    Article  Google Scholar 

  64. Dupre, A. (1869), Mechanical Theory of Heat, Paris, p. 368.

    Google Scholar 

  65. Gregg, S.J. and Sing, K.S.W. (1967), Adsorption Surface Area and Porosity, Academic Press, London.

    Google Scholar 

  66. Harkins, W.D. and Jura, G. (1944), J. Am. Chem. Soc., 66, 1362.

    Article  Google Scholar 

  67. Clint, J.H. et al. (1970), Proc. Int. Symp. Surface Area Determination, Bristol, 1969, Butterworths.

    Google Scholar 

  68. Patel, R.M. (1971), Physical adsorption at solid-liquid interface, Ph.D. thesis, Univ. Bradford.

    Google Scholar 

  69. Burevski, D., private communications, Ph.D. project, Univ. Bradford.

    Google Scholar 

  70. Giles, C.H. and D’Silva, A.P. (1969), Trans. Faraday Soc., 65, 1943.

    Article  Google Scholar 

  71. Giles, C.H., D’Silva, A.P. and Trivedi, A.S. (1970), J. appl. Chem., 20, 37.

    Article  Google Scholar 

  72. Giles, C.H. et al. (1978), Proc. Conf. Structure of Porous Solids, Neuchatel, Switzerland, Swiss Chem. Soc.

    Google Scholar 

  73. Giles, C. H. and Trivedi, A.S. (1969), Chem. Ind., 1426–7.

    Google Scholar 

  74. Allen, T. and Burevski, D. (1977), Powder Technol., 17, 3, 265–72.

    Article  Google Scholar 

  75. Sips, R. (1950), J. Chem. Phys., 18, 1024.

    Article  Google Scholar 

  76. Allen, T. and Burevski, D. (1977), Powder Technol., 18, 2, 139–48.

    Article  Google Scholar 

  77. Allen, T. and Burevski, D. (1978), Powder Technol., 21, 1, 91–96.

    Article  Google Scholar 

  78. Jäkel, K. (1972), Beckmann Report 2, S.33–35, Beckmann Instruments GmbH, Frankfurter Ring 115, D-8000, München 40, W. Germany.

    Google Scholar 

  79. Mesderfer, J.W. et al. (1952), TAPPI, 35, 374.

    Google Scholar 

  80. Giles, C.H. and Tolia, A.H. (1964), J. appl. Chem., 14, 186–95.

    Article  Google Scholar 

  81. Clark, J. d’A. (1942), Paper Trade J., 115, 32.

    Google Scholar 

  82. Giles, C.H. et al. (1959), J. Chem. Soc., 535–44.

    Google Scholar 

  83. Giles, C.H., Greczek, J.J. and Nakhura, S.N. (1961), ibid., 93–95.

    Google Scholar 

  84. Giles, C.H., Easton, I.A. and McKay, R.B. (1964), ibid., 4495–503.

    Google Scholar 

  85. Allington, M.H. et al. (1958), J. Chem. Soc., 8, 108–16.

    Google Scholar 

  86. Giles, C.H. et al. (1958), J. Chem. Soc., 8, 416–24.

    Google Scholar 

  87. Wegmann, J. (1962), Am. Dyest. Rep., 51, 276.

    Google Scholar 

  88. Padhye, M.R. and Karnik, R.R. (1911), Indian J. Technol., 9, 320–2.

    Google Scholar 

  89. Corrin, M.L. et al. (1949), J. Colloid. Sci., 4, 485–95.

    Article  Google Scholar 

  90. Giles, C.H. et al. (1960), J. Chem. Soc., 3793–973.

    Google Scholar 

  91. Giles, C.H. and Nakhura, S.N. (1962), J. Appl. Chem., 12, 266–73.

    Article  Google Scholar 

  92. Giles, C.H. and Tolia, A.H. (1964), J. Appl. Chem., 14, 186–94.

    Article  Google Scholar 

  93. Giles, C.H., D’Silva, A.P. and Trivedi, A.S. (1970), J. Appl. Chem., 20, 37–41.

    Article  Google Scholar 

  94. Giles, C.H. et al. (1971), J. Appl. Chem. Biotechnol., 21, 5–9.

    Article  MathSciNet  Google Scholar 

  95. Tuul, J. and Innes, W.B. (1962), Analyt. Chem., 34, 7, 818–20.

    Article  Google Scholar 

  96. Bickerman, J.J. (1970), Physical Surfaces, Academic Press, NY.

    Google Scholar 

  97. Chessick, J.J., Young, G.J. and Zettlemoyer, A.C. (1954), Trans. Faraday Soc., 50, 587.

    Article  Google Scholar 

  98. Taylor, J.A.G. (1965), Chemy. Ind., 2003.

    Google Scholar 

  99. Wade, W.H. and Hackerman, N. (1960), J. Phys. Chem., 64, 1196.

    Article  Google Scholar 

  100. Partyka, S. et al. (1975), 4th Int. Conf. Thermodynamic Chemistry (CR), 7, 46–55.

    Google Scholar 

  101. Partyka, S., Rouquerol, F. and Rouquerol, J. (1979), J. Colloid Interfac. Sci., 68, 1, 21–31.

    Article  Google Scholar 

  102. Adnadevic, B.K. and Vucelic, D.R. (1978), Glas. Hem. Drus., Belgrade, 43, 7, 385–92.

    Google Scholar 

  103. Gata, G. (1975), Tek. Econ. Inst. Geol., Rumania, Ser. 1, 13, 13–19.

    Google Scholar 

  104. Madzen, F.T. (1977), Thermochim. Acta, 21, 1, 89–93.

    Article  Google Scholar 

  105. Richter, V., Merz, A. and Morgenthal, J. (1975), Konf. Metal. Proszkow Pol. (mater. Konf.), Inst. Metal. Niezelaz, Glivice, Poland, pp. 123–34.

    Google Scholar 

  106. Larionov, O.G. (1976), V. sb Adsorbtsiya i Poristot., 122–6.

    Google Scholar 

  107. Kulshreshtha, A.K., Chudasama, V.P. and Dweltz, N.E. (1976), J. appl. Polym. Sci., 20, 9, 2329–38.

    Article  Google Scholar 

  108. Ruzek, J. and Zbuzek, B. (1975), Silikaty, 19, 1, 49–66.

    Google Scholar 

  109. Kloshko, B.N. et al. (1974), Nauch tekhu sb, 6, 22–24.

    Google Scholar 

  110. Chetty, K.V. and Naidu, P.R. (1972), Proc. Chem. Symp., 1, 79–83, Dept. Atom. Energy, Bombay.

    Google Scholar 

  111. Vesolov, V.V. and Galenko, N.P. (1974), Zh. Fiz. Khim., 48, 9, 2276–9.

    Google Scholar 

  112. Koganovskii, A.M. and Leuchenko, T.M. (1976), Dopou Akad. Ukr. SSR, Ser. B, 4, 326–8.

    Google Scholar 

  113. Roe Ryong-Joon, (1975), J. Colloid Interfac. Sci., 50, 1, 64–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 T. Allen

About this chapter

Cite this chapter

Allen, T. (1981). Other methods for determining surface area. In: Particle Size Measurement. Powder Technology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3063-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3063-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-15410-2

  • Online ISBN: 978-1-4899-3063-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics