Skip to main content

Physiology of the autonomic nervous system

  • Chapter
The Autonomic Nervous System and Exercise
  • 207 Accesses

Abstract

The autonomic nervous system is not under voluntary control. Its major role is to ensure homeostasis, that is, a stable internal environment. The body’s internal environment is monitored by sensory receptors (section 1.5.3) which transmit neural impulses along afferent nerves to the central nervous system. The central nervous system in turn relays the appropriate responses to the incoming sensory information via efferent autonomic nerves. Thus, when the body’s internal environment is challenged, the autonomic nervous system responds through its connections with the tissues. In addition, neural activity in the higher centres (such as conscious thought arising in the cerebral cortex or emotions arising in the limbic system) influences brainstem nuclei which form neural connections with sympathetic autonomic neurones. This anticipatory increase in autonomic nervous activity is an important response prior to exercise. In preparing the body for exercise the effects of the sympathetic autonomic nerves help to reduce the challenge that exercise itself presents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and further reading

  • Ahlquist, R.P. (1948) A study of the adrenotropic receptors. Am. J. Physiol., 153, 586–600.

    PubMed  CAS  Google Scholar 

  • Banks, P., Bartley, W. and Birt, L.M. (1976) The Biochemistry of the Tissues, John Wiley, London.

    Google Scholar 

  • Berthelsen, S. and Pettinger W.A. (1977) A fundamental basis for classification of α-adrenergic receptors. Life Sci., 21, 58–601.

    Article  Google Scholar 

  • Burke, D., Sundlöf, G. and Wallin, B.G. (1977) Postural effects on muscle nerve sympathetic activity in man. J. Physiol. (Lond.), 272, 399–414.

    CAS  Google Scholar 

  • Burnstock, G., Campbell, G., Bennett, M. and Holman, M.E. (1963) Inhibition of the smooth muscle of the taenia coli. Nature, 200, 581–582.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock, G. (1971) Neural nomenclature. Nature, 299, 282–283.

    Article  Google Scholar 

  • Burnstock, G. (1986a) The changing face of autonomic neurotransmission. Acta Physiol. Scand., 126, 67–91.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock, G. (1986b) The non-adrenergic non-cholinergic nervous system. Arch. Int. Pharmacodyn. Suppl. 280, 1–15.

    PubMed  CAS  Google Scholar 

  • Christensen, N.J. (1988) Methods of studying sympathoadrenal activity in man. Acta Med. Scand., 223, 481–483.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, D.M., Kinnier, W.J., Farber, L. and Costa, E. (1980) A biochemical study of receptor internalisation during β-adrenergic receptor desensitisation in frog erythrocytes. Mol. Pharmacol., 18, 348–55.

    PubMed  CAS  Google Scholar 

  • Clutter, W.E., Bier, D.M., Shah, S.D. and Cryer, P.E. (1980) Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J. Clin. Invest., 66, 94–101.

    Article  PubMed  CAS  Google Scholar 

  • Cryer, P.E. (1980) Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N. Eng. J. Med., 303, 436–444.

    Article  CAS  Google Scholar 

  • Esler, M., Jennings, G., Leonard, P., Sacharias, N., Burke, F., Johos, J. and Blombery, P. (1984) Contributions of individual organs to total noradrenaline release in humans. Acta Physiol. Scand. Suppl., 527, 11–16.

    CAS  Google Scholar 

  • Exton, J.H. (1985) Mechanisms involved in α adrenergic phenomena. Am. J. Physiol., 248, E633–E647.

    Google Scholar 

  • Galbo, H., Holst, J.J. and Christensen, N.J. (1975) Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. J. Appl. Physiol., 38, 70–76.

    PubMed  CAS  Google Scholar 

  • Halter, J.B., Pflug, A.E. and Tolas, A.G. (1980) Arterial-venous differences of plasma catecholamines in man. Metabolism, 29, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Halter, J.B., Stratton, J.R. and Pfeifer, M.A. (1984) Plasma catecholamines and hemodynamic responses to stress states in man. Acta Physiol. Scand. Suppl., 527, 31–38.

    CAS  Google Scholar 

  • Hedberg, A. (1983) Adrenergic receptors. Methods of determination and mechanisms of regulation. Acta Med. Scand. Suppl., 672, 7–15.

    CAS  Google Scholar 

  • Hjemdahl, P. (1984) Inter-laboratory comparison of plasma catecholamine determinations using several different assays. Acta Physiol. Scand., Suppl., 527, 43–54.

    CAS  Google Scholar 

  • Hjemdahl, P., Eklund, B. and Kaijser, L. (1982) Catecholamine handling by the human forearm at rest and during isometric exercise and lower body negative pressure. Br. J. Pharmacol., 77, 324P.

    Google Scholar 

  • Jörgensen, L.S., Bönlöcke, L. and Christensen, N.J. (1985) Plasma adrenaline and noradrenaline during mental stress and isometric exercise in man. The role of arterial sampling. Scand. J. Clin. Lab. Invest., 45, 447–452.

    Article  PubMed  Google Scholar 

  • Joyce, D.A., Beilin, L.J., Vandorgen, R. and Davidson, L. (1982) Plasma free and sulfate conjugated catecholamine levels during acute physiological stimulation in man. Life Sci., 30, 447–454.

    Article  PubMed  CAS  Google Scholar 

  • Levin, B.E. and Natelson, B.J. (1980) The relation of plasma norepinephrine and epinephrine levels over time in humans. J. Aut. Nerv. System., 2, 315–325.

    Article  CAS  Google Scholar 

  • Levin, B.E., Rappaport, M. and Natelson, B.H. (1979) Ultradian variations of plasma noradrenaline in humans. Life Sci., 25, 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Martinson, J. and Muren, A. (1963) Excitatory and inhibitory effects of vagus stimulation on gastric motility in the cat. Acta Physiol. Scand., 57, 309–316.

    Article  Google Scholar 

  • Moreland, R.S. and Bohr, D.F. (1984) Adrenergic control of coronary arteries. Fed. Proc., 43, 2857–2861.

    PubMed  CAS  Google Scholar 

  • Nyberg, G. (1981) Vagal and sympathetic contributions to the heart rate at rest and during isometric and dynamic exercise in young healthy men. J. Cardiovasc. Pharmacol., 3, 1243–1250.

    Article  PubMed  CAS  Google Scholar 

  • Pérronnet, F., Blier, P., Brisson, G., Diamond, P., Ledoux, M. and Volle, M. (1986) Reproducibility of plasma catecholamine concentration at rest and during exercise in man. Eur. J. Appl. Physiol., 54, 555–558.

    Article  Google Scholar 

  • Silverberg, A.B., Shah, S.D., Haymond, M.W. and Cryer, P.E. (1978) Norepinephrine: hormone and neurotransmitter in man. Am. J. Physiol., 234, E252–E256.

    Google Scholar 

  • Sundlöf, G. and Wallin, B.G. (1977) The variability of muscle nerve sympathetic activity in resting recumbent man. J. Physiol. (Lond.), 272, E35–E40.

    Google Scholar 

  • Wallin, B.G., Sundlöf, G., Eriksson, B-M., Dominiak, P., Grobecker, H. and Lindblad, L.E. (1981) Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol. Scand., 111, 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Wallin, B.G., Mörlin, C. and Hjemdahl, P. (1982) Muscle sympathetic activity and venous plasma noradrenaline concentrations during static exercise in normotensive and hypertensive subjects. Acta Physiol. Scand., 129, 489–497.

    Article  Google Scholar 

  • Young, J.B. and Landsberg, L. (1979) Catecholamines and the sympathoadrenal system: the regulation of metabolism, in Contemporary Endocrinology, Vol. 1, (ed. S. Ingbar), Plenum Medical Book Company, New York, pp. 245–303.

    Chapter  Google Scholar 

  • Young, J.B., Rosa, R.M. and Landsberg, L. (1984) Dissociation of sympathetic nervous system and adrenal medullary responses. Am. J. Physiol., 247, E35–E40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Green, J.H. (1990). Physiology of the autonomic nervous system. In: The Autonomic Nervous System and Exercise. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2919-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2919-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-32500-7

  • Online ISBN: 978-1-4899-2919-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics