Skip to main content
  • 856 Accesses

Abstract

Consider a material homogeneous body occupying a region Ω ⊂ R N.We assume that ∂Ω is of class C 1 and let n denote its outward unit normal. We identify the body with Ω and let k > 0 be its dimensionless conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See 2.1 of the Complements.

    Google Scholar 

  2. A.N.Tychonov, Théorèmes d’unicité pour l’équation de la chaleur, Math. Sbornik, #42 (1935), pp.199–216.

    Google Scholar 

  3. S.Tacklind, Sur les classes quasianalytiques des solutions des équations aux deriveées partielles du type parabolique, Acta Reg. Sc. Uppsaliensis (Ser.. 4), #10 (1936), pp. 3–55.

    Google Scholar 

  4. See footnote 2.

    Google Scholar 

  5. See Cartan, [2], Theorem 2, Chapter II, page 72.

    Google Scholar 

  6. James Stirling, 1692–1770; J.Stirling, Methodus Differentialis: Sive Tractatus de Summatione et Interpolatione Serierum Infinitarum London, 1730.

    Google Scholar 

  7. Basic facts on mollifiers are collected in Section 6 of the Complements in the Preliminaries. See also 6.1 of the Complements.

    Google Scholar 

  8. See Problem 7.1.

    Google Scholar 

  9. See footnote 6 of Chapter II.

    Google Scholar 

  10. This method is a particular case of the Duhamel principle. See Section 2.3 of the Complements of Chapter VI.

    Google Scholar 

  11. See Section 15 of Chapter IV.

    Google Scholar 

  12. See Problem 12.3 of the Complements of Chapter IV.

    Google Scholar 

  13. The eigenfunctions v; are Hölder continuous in S2. This is the content of Corollary 12.1 of Chapter III. By the Schauder estimates of Section 9 of Chapter II, v; E C2+’ (S2). Therefore, by a bootstrap argument v; E C°°(12). Actually v; are of class C2+v up to 852, so that (a = v; can be taken as a testing function in (10.14). Such C estimates up to the boundary have been indicated in Section 9 of the complements of Chapter II.

    Google Scholar 

  14. Vladimir Andreevich Steklov, 1864–1926.

    Google Scholar 

  15. For a discussion on logarithmic convexity methods in ill-posed problems we refer to L.E. Payne, Improperly Posed Problems in Partial Differential Equations, SIAM, Vol. 22, Philadelphia PA, 1975 and references therein.

    Google Scholar 

  16. These estimations are in the same spirit of Maurice Gevrey, 1844–1957; M. Gevrey, Sur les équations aux dérivées partielles du type parabolique, J. Math. Pures et Appl.., Serie VI, Vol. 9 (1913), pp. 305–471, and Serie IV, Vol. 10 (1914), pp. 105–148.

    Google Scholar 

  17. See 5.1 of the Complements.

    Google Scholar 

  18. See 12.4 and 12.5 of the Complements.

    Google Scholar 

  19. See Chapter II, Section 5.

    Google Scholar 

  20. See 13.1 of the Complements.

    Google Scholar 

  21. J. Hadamard, Extension à l’équation de la chaleur d’un théorème de A. Harnack, Rend. Circ. Mat. di Palermo, Ser. 2 Vol. 3 (1954), pp. 337–346.

    Google Scholar 

  22. B.Pini, Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend. Sem. Mat. Univ.. Padova, Vol.23 (1954) pp.422–434.

    Google Scholar 

  23. J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure and Appl. Math.., Vol. 17 (1964), pp. 101–134.

    Google Scholar 

  24. N.V. Krylov and M.V. Safonov, A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR Izvestijia, vol. 16, #1 (1981), pp. 151–164.

    Google Scholar 

  25. D.V. Widder, Positive temperatures in an infinite rod, Trans. Amer. Math. Soc., #55 (1944), pp. 85–95.

    Google Scholar 

  26. Oliver Heaviside, 1850–1925, electrical engineer.

    Google Scholar 

  27. Equation (2.1 c) arises in the filtration of a fluid in a porous medium. See A.E. Scheidegger, footnote 2 of the Preliminaries. The similarity solution (2.2) was derived independently by Barenblatt and Pattie: G.I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Meh.. #16 (1952), pp. 67–78; R.E. Pattie, Diffusion from an instantaneous point source with a concentration-dependent coefficient, Quarterly J. of Appl. Math.. #12 (1959) pp. 407–409.

    Google Scholar 

  28. A version of (2.3c) arises in the modelling of certain non-Newtonian fluids. See, for example, O.A. Ladyzenskajia, New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them, Proc. Steklov Inst. Math.. #102 (1967), pp.95–118 (transl. Trudy Math. Inst. Steklov #102 (1967), pp. 85–104).

    Google Scholar 

  29. Jean Baptiste Joseph Fourier, 1768–1830.

    Google Scholar 

  30. L. Schwartz, Théorie des distributions, Hermann & Cie, Paris, 1966.

    Google Scholar 

  31. PC. Rosenbloom and D.V. Widder, A temperature function which vanishes initially, Amer. Math. Monthly #65 (1958), pp. 607–609.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

DiBenedetto, E. (1995). The Heat Equation. In: Partial Differential Equations. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-2840-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2840-5_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-2842-9

  • Online ISBN: 978-1-4899-2840-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics