Skip to main content

Integral Equations and Eigenvalue Problems

  • Chapter
Partial Differential Equations
  • 854 Accesses

Abstract

An equation of the type

$$u(x) = \lambda \int\limits_\Omega {K(x;y)u(y)dy + f(x)}$$
(1.1)

is a Fredholml integral equation with kernel K(·; ·).Here Ω is a bounded region of R N, N ≥ 1, with boundary ∂Ω of class C 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erik Ivar Fredholm, 1866–1927.

    Google Scholar 

  2. The assumptions (1.3)—(1.4), and their analog for (1.1)’, arise naturally from the integral equations (6.2), (7.4) and (9.2) of Chapter III. However, they are somewhat stronger than needed. The theory of existence and uniqueness of solutions, developed in the next sections, requires only that K(.; •) satisfies (1.2). Indeed the same theory could be developed for kernels satisfying only one of (1.2). See Riesz-Nagy, [32] pp. 143–192.

    Google Scholar 

  3. Precompact here is meant in the topology of the uniform convergence in Ω.

    Google Scholar 

  4. Kernels of this kind are also referred to as degenerate or kernels of finite rank. The reason for this terminology will be apparent from the argument of Section 14 (see also Remark 14.1), We have preferred the less standard but more suggestive terminology of separable.

    Google Scholar 

  5. See 4.1 of the Complements.

    Google Scholar 

  6. We say that a complex number)r E C is an eigenvalue of the matrix [aij] if it is a solution of the algebraic equation A more common definition is that a complex number ii E Cis an eigenvalue of [a] if it is a solution of the algebraic equation det (µI— [aij]) = O. The motivation for our definition will be apparent as we proceed and affords a more streamlined presentation of the theory of existence of solutions to integral equations.

    Google Scholar 

  7. See Cartan, [2], page 41.

    Google Scholar 

  8. I. Fredholm, Sur une nouvelle méthode pour la résolution du problème de Dirichlet, Kong. Vetenskaps-Akademiens Fröh. Stockholm, (1900), pp. 39–46; I. Fredholm, Sur une classe d’équations fonctionnelles, Acta Math. Vol. 27 (1903), pp. 365–390. See also the monographs of Tricorni, [38] and Mikhlin, [29].

    Google Scholar 

  9. See Section 6 of the Complements.

    Google Scholar 

  10. The method of approximating a general kernel with a separable one in some suitable topology is due to E. Schmidt, Anflösung der allgemeinen linearen integralgleichungen, Math. Annalen, Band 64, (1907), pp. 161–174. See also J. Radon, Über lineare Funktionaltransformationen und Funktionalgleichungen, Sitzsber. Akad. Wiss. Wien, #128 (1919), pp. 1083–1121.

    Google Scholar 

  11. For N = 2 see Problem 7.1 of the Complements.

    Google Scholar 

  12. See 8.5 of the Complements of Chapter II.

    Google Scholar 

  13. See (2.4) and (2.5) of Chapter II.

    Google Scholar 

  14. See Section 3.3 of the Complements in the Preliminaries.

    Google Scholar 

  15. This is meant in the sense of (i) and (ii) of Section 10 of Chapter III. Actually A compact implies that also A* is compact. See, for example, F. Riesz—B. Nagy, [32] or K. Yoshida, [41].

    Google Scholar 

  16. See Section 4 of the Complements in the Preliminaries.

    Google Scholar 

  17. The inner product of vectors a = (al, aZ,…, a n ) and b =(b1 bZ,…, bn) in Cn, is defined.

    Google Scholar 

  18. Any kernel K(·; ·). that can be decomposed, as in (9.11)-(9.12), for all s E (0, 1), generates, via (8.5), a compact operator in L2(t2). See Riesz-Nagy, [32], page 177. Compactness methods in integral equations are due to Frigyes (Frédéric) Riesz, 1880–1956; F. Riesz, Über lineare Functionalgleichungen, Acta Math. #41, (1918), pp. 71–98.

    Google Scholar 

  19. Even though K(-;.) is symmetric, the kernel K 0 (.; •) need not be symmetric, and in general.

    Google Scholar 

  20. See Remark 10.1.

    Google Scholar 

  21. See Problem 10.2 of the Complements.

    Google Scholar 

  22. The idea of using the extremal problem (11.2) to find the first eigenvalue is due to Hilbert. The method applies to general, linear, symmetric, compact operators in L 2 (S2); D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen,(Leipzig, 1912). See also F. Reillich, Spektraltheorie in nicht-separablen Räumen, Math. Annalen, Band 110, (1934), pp. 342–356.

    Google Scholar 

  23. David Hilbert, 1862–1943; Erhard Schmidt, 1876–1959.

    Google Scholar 

  24. See also 5.9 of the Complements of Chapter II.

    Google Scholar 

  25. Niels Henrik Abel, 1802–1829.

    Google Scholar 

  26. Angles are counted counterclockwise starting from the positive direction of the horizontal axis.

    Google Scholar 

  27. Vito Volterra, 1860–1940.

    Google Scholar 

  28. N. Abel, Solution de quelques problèmes à l’aide d’intégrales définies, OEuvres, #1, 1881, pp. 1127; N. Abel, Résolution d’un problème de mécanique, OEuvres, #1, 1881, pp. 97–101; “OEuvres complètes de N.H. Abel mathématicien”, edited and annotated by B. Holmboe, Oslo 1839; Nouvelle Édition, M.M.L. Sylow and S. Lie, eds. 2 Vols. (Oslo 1881).

    Google Scholar 

  29. See Cartan, [2], the example on page 107.

    Google Scholar 

  30. V. Volterra, Sulla inversione degli integrali definiti, Rend. Accad. Lincei, Ser. 5 (1896), pp. 177185; V. Volterra, Sopra alcune questioni di inversione di integrali definiti, Ann. di Mat. (2), # 25 (1897), pp. 139–178. See also Opere Matematiche Memorie e Note di Vito Volterra, Accad. Naz. dei Lincei, Roma, 1954, pp. 216–275 and pp. 279–313.

    Google Scholar 

  31. It is natural to ask whether integral equations of the type of (1.9c)’, set in the unbounded domain (0, oo), have a solution if the kernel K (·; ·). does not vanish for y > x. It turns out that some decay has to imposed on K (·; ·). For kernels of the type K(x; y) = K (x — y) and a theory is developed: N. Wiener and E. Hopf, Über eine Klasse singulärer Integralgleichungen, Sitzungsber. Preuss. Akad. der Wiss.,1931, pp. 695. See also G. Talenti, Sulle equazioni integrali di Wiener—Hopf, Boll. Un. Mat. Ital., (4) #7, Suppl. fasc. 1 (1973), pp. 18–118.

    Google Scholar 

  32. A. Hammerstein, Nichtlineare Integralgleichungen nebst Angewendungen, Acta Math. #54 (1930), pp. 117–76.

    Google Scholar 

  33. Karl Theodor Wilhelm Weierstrass, 1815–1897. The theorem was proved by Weierstrass for functions of one variable: K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Mathematische Werke, Band 3, Abhandlugen III, pp. 1–37 (Sitzungsberichte, Kön. Preussischen Akad. der Wissenschaften, July 9–30, 1885), and extended to functions of several variables by Marshall H. Stone, 1903–1989; M.H. Stone, Generalized Weierstrass approximation theorem, Math. Magazine, Vol. 21, 1947/1948, pp. 167–184, and pp. 237–254.

    Google Scholar 

  34. Friedrich Wilhelm Bessel, 1784–1817.

    Google Scholar 

  35. Marc-Antoine Parseval des Chêmes, 1755–1833.

    Google Scholar 

  36. See Section 12 of Chapter II.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

DiBenedetto, E. (1995). Integral Equations and Eigenvalue Problems. In: Partial Differential Equations. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-2840-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2840-5_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-2842-9

  • Online ISBN: 978-1-4899-2840-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics