Skip to main content

The D-1 Dopamine Receptor

  • Chapter
Central D1 Dopamine Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 235))

Abstract

The entity known today as the D-1 receptor was identified in the late 1960’s. These early studies utilized either the retina or the superior cervical ganglion of the cow (Kebabian and Greengard, 1971; Brown and Makman, 1972). In either of these tissues, dopamine stimulated the production of cyclic AMP. In either of these tissues, dopamine stimulated the production of cyclic AMP. In the case of the superior cervical ganglion, the use of bovine tissue was fortuitous: the bovine ganglion gave a much larger response to dopamine than the homologus structure in rats or rabbits (Cramer et al., 1973; Kalix et al., 1974; Williams et al. 1977). In the case of the retina, the response to dopamine was ubiquitous among common laboratory animals. Dopamine-stimulated accumulation of cAMP provided a convenient biochemical signal for determining the drug-recognition properties of the dopamine receptor. This approach was superior to the behavioral assays then in use to characterize the drug recognition properties of the then unitary dopamine receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altar, CA., Marien, M.R. (1987). Picomolar affinity of 125I-SCH 23982 for D1 receptors in brain demonstrated with digital subtraction autoradiography. J. Neurosci. 7: 213–222.

    Google Scholar 

  • Amlaiky, N., Berger, J.G., Chang, W., McQuade, R.J. and Caron, M.G. (1987). Identification of the binding subunit of the D1-dopamine receptor by photoaffinity crosslinking. Mol. Pharmacol. 31: 129–134.

    Google Scholar 

  • Andersen, P.H., Gronvald, F.C. and Jansen, J.A. (1985). A comparison between dopamine-stimulated adenylate cyclase and 3H-SCH 23390 binding in rat striatum. Life Sci. 37: 1971–1983.

    Article  Google Scholar 

  • Andersen, P.H., Nielsen, E.B., Scheel-Kruger, J., Jansen, J.A., and Hohlweg, R. (1987). Thienopyridine derivatives identified as the first selective, full efficacy, dopamine D1 receptor agonists. European J. Pharmacol. 137: 291–292.

    Article  Google Scholar 

  • Arnt, J. (1985). Hyperactivity induced by stimulation of separate dopamine D-1 and D-2 receptors in rats with bilateral 6-OHDA lesions. Life Sci. 37: 717–723.

    Article  Google Scholar 

  • Arnt, J. (1985). Differential effects of dopamine D-1 and D-2 agonists and antagonists in 6-hydroxydopamine-lesioned rats. Psychopharmacology [Suppl] 2: 60–61.

    Article  Google Scholar 

  • Arnt, J. (1985). Behavioral stimulation is induced by separate dopamine D-1 and D-2 receptor sites in reserpine-pretreated but not in normal rats. Eur. J. Pharmacol. 113: 79–88.

    Article  Google Scholar 

  • Billard, W., Ruperto, V., Crosby, G., lorio, L.C. and Barnett, A. (1984). Characterization of the binding of 3H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum. Life Sci. 35: 1885–1893.

    Article  Google Scholar 

  • Boyson, S.J., McGonigle, P. and Molinoff, P.B. (1986). Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J. Neurosci. 6: 3177–3188.

    Google Scholar 

  • Brown, E.M. and Aurbach, G.D. (1980). Role of cyclic nucleotides in secretory mechanisms and actions of parathyroid hormone and calcitonin. Vitarn Horm. 38: 205–256.

    Article  Google Scholar 

  • Brown, J.H. and Makman, M.H. (1972). Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3′: 5′-cyclic monophosphate formation in intact retina. Proc. Natl. Acad. Sci. USA 69: 539–543.

    Article  Google Scholar 

  • Cannon, J.G. (1985). Dopamine agonists: structure-activity relationships. Prog. Drug. Res. 29: 303–414.

    Article  Google Scholar 

  • Chen, T.C., Cote, T.E. and Kebabian, J.W. (1980). Endogenous components of the striatum confer dopamine-sensitivity upon adenylate cyclase activity: the role of endogenous guanyl nucleotides. Brain Res. 181: 139–149.

    Article  Google Scholar 

  • Clement-Cormier, Y.C., Parrish, R.G., Petzold, G.L., Kebabian, J.W., and Greengard, P. (1975). Characterization of a dopamine-sensitive adenylate cyclase in the rat caudate nucleus. J. Neurochem. 25: 143–149.

    Article  Google Scholar 

  • Cramer, H., Johnson, D.G., Hanbauer, I., Silberstein, S.D. and Kopin, I.J. (1973). Accumulation of adenosine 3′,5′-monophosphate induced by catecholamines in the rat superior cervical ganglion in vitro. Brain Res. 53: 97–104.

    Article  Google Scholar 

  • Dowling, J.E. (1987). The Retina. An approachable part of the brain. Harvard University Press.

    Google Scholar 

  • Dowling, J.E. and Watling, K.J. (1981). Dopaminergic mechanisms in the teleost retina. II. Factors affecting the accumulation of cyclic AMP in pieces of intact carp retina. J. Neurochem. 36: 569–579.

    Article  Google Scholar 

  • Goldberg, L.I., Glock, D., Kohli, J.D. and Barnett, A. (1984). Separation of peripheral dopamine receptors by a selective DA1 antagonist, SCH 23390. Hypertension 6(2 Pt 2): 125–30.

    Google Scholar 

  • Hyttel, J. (1981). Similarities between the binding of 3H-piflutixol and 3H-flupentixol to rat striatal dopamine receptors in vitro. Life Sci. 28: 563–569.

    Article  Google Scholar 

  • Iorio, L.C., Barnett, A., Leitz, F.H., Houser, V.P., Korduba, C.A. (1983) SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J. Pharmacol. Exp. Ther. 226: 462–468.

    Google Scholar 

  • Jacobowitz, D.M. and Brown, E.M. (1980). Boving parathyroid catecholamines: a chemical and histochemical study. Experientia 36: 115–116.

    Article  Google Scholar 

  • Kaiser, C. and Jain, T. (1985). Dopamine receptors: Functions, subtypes and emerging concepts. Medicinal Research Quarterly 5: 145–229.

    Article  Google Scholar 

  • Kalix, P., McAfee, D.A., Schorderet, M. and Greengard P. (1974). Pharmacological analysis of synaptically mediated increase in cyclic adenosine monophosphate in rabbit superior cervical ganglion. J. Pharmacol. Exp. Ther. 188: 676–687.

    Google Scholar 

  • Kebabian, J.W. and Calne, D.B. (1979). Multiple receptors for dopamine. Nature 277: 93–96.

    Article  Google Scholar 

  • Kebabian, J.W., Petzold, G.L. and Greengard P. (1972). Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc. Natl. Acad. Sci. USA 69: 2145–2149.

    Article  Google Scholar 

  • Kebabian, J.W. and Greengard, P. (1971). Dopamine-sensitive adenyl cyclase: Possible role in synaptic transmission. Science 174: 1346–1349.

    Article  Google Scholar 

  • Mickevicius, C.K., Harrison, J.K. and Gnegy, M.E. (1986). Effect of cholera toxin on the activation of adenylate cyclase by calmodulin in bovine striaturn. Mol. Pharmacol. 30: 469–475.

    Google Scholar 

  • Nielsen, M., Klimek, V. and Hyttel, J. (1984). Distinct target size of dopamine D-1 and D-2 receptors in rat striatum. Life Sci. 35: 325–332.

    Article  Google Scholar 

  • Niznik, H.B., Otsuka, N.Y., Dumbrille-Ross, A., Grigoriadis, D., Tirpak, A. and Seeman, P. (1986). Dopamine D1 receptors characterized with [3H]SCH 23390. Solubilization of a guanine nucleotide-sensitive form of the receptor. J. Biol. Chem. 261: 8397–8406.

    Google Scholar 

  • Rodbell, M. (1980). The role of hormone receptors and GTP-regulatory proteins in membrain transduction. Nature 284: 17–22.

    Article  Google Scholar 

  • Ross, S.T., Franz, R.G., Gallagher, G., Brenner, M., Wilson, J.W., DeMarinis, R.M., Hieble, J.P. and Sarau, H.M. (1987). Dopamine agonists related to 3-allyl-6-chloro-2,3,4,5-tetrahydro-1-(4-hydroxyphenyl)-1H-3-benzazepine-7,8-diol. J. Med. Chem. 30: 35–40.

    Article  Google Scholar 

  • Setler, P.E., Sarau, H.M., Zirkle, C.L. and Saunders, H.L. (1978). The central effects of a novel dopamine agonist. Eur. J. Pharmacol. 50: 419–430.

    Article  Google Scholar 

  • Sidhu, A. and Fishman, P.H. (1986). Solubilization of the D-1 dopamine receptor from rat striatum. Biochem. Biophys. Res. Commun. 137: 943–949.

    Article  Google Scholar 

  • Sidhu, A., van Oene, J.C., Dandridge, P., Kaiser, C. and Kebabian, J.W. (1986). [125I]SCH 23982: The ligand of choice for identifying the D-1 dopamine receptor. Eur. J. Pharmacol. 128: 213–220.

    Article  Google Scholar 

  • Sidhu, A., and Kebabian, J.W. (1985). An iodinated ligand identifying the D-1 dopamine receptor. Eur. J. Pharmacol. 113: 437–440.

    Article  Google Scholar 

  • Teranishi, T., Negishi, K. and Kato, S. (1984). Dye coupling between amacrine cells in carp retina. Neurosci. Lett. 51: 73–78.

    Article  Google Scholar 

  • Teranishi, T., Negishi, K., and Kato, S. (1983). Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina. Nature 301: 243–246.

    Article  Google Scholar 

  • Trugman, J.M. and Wooten, G.F. (1987). Selective D1 and D2 dopamine agonists differentially alter basal ganglia glucose utilization in rats with unilateral 6-hydroxydopamine substantia nigra lesions. J. Neurosci. 7: 2927–2935.

    Google Scholar 

  • Watling, K.J. and Dowling, J.E. (1981). Dopaminergic mechanisms in the teleost retina. I. Dopamine-sensitive adenylate cyclase in homogenates of carp retina; effects of agonists, antagonists, and ergots. J. Neurochem. 36: 559–568.

    Article  Google Scholar 

  • Weinstock, J., Hieble, J.P., and Wilson J.W. (1985). The chemistry and pharmacology of 3-benzazepine derivatives. Drugs of the Future 10: 646–697.

    Google Scholar 

  • Williams, T.H., Black, A.C., Jr., Chiba, T. and Jew, J.Y. (1977). Species differences in mammalian SIF cells. Adv. Biochem. Psychopharmacol. 16: 505–511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kebabian, J.W. (1988). The D-1 Dopamine Receptor. In: Goldstein, M., Fuxe, K., Tabachnick, I. (eds) Central D1 Dopamine Receptors. Advances in Experimental Medicine and Biology, vol 235. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2723-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2723-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2725-5

  • Online ISBN: 978-1-4899-2723-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics