Skip to main content

Numerical Inversion of Laplace Transforms

  • Chapter
Book cover Integral Transforms and their Applications

Part of the book series: Applied Mathematical Sciences ((AMS,volume 25))

  • 526 Accesses

Abstract

There are many problems whose solution may be found in terms of a Laplace or Fourier transform, which is then too complicated for inversion using the techniques of complex analysis. In this section we discuss some of the methods which have been developed — and in some cases are still being developed — for the numerical evaluation of the Laplace inversion integral. We make no explicit reference to inverse Fourier transforms, although they may obviously be treated by similar methods, because of the close relationship between the two transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes

  1. A more comprehensive survey and evaluation may be found in B. Davies and B. Martin, J. Comp. Phys. (1979), 33

    Article  MathSciNet  MATH  Google Scholar 

  2. Based on H. E. Salzer, Math. Tables and other aids to computation, (1955), 9, 164; Journal of Maths. and Phys. (1958), 37, 89.

    Article  MathSciNet  MATH  Google Scholar 

  3. For example, see Stroud (1974).

    Google Scholar 

  4. H. E. Salzer, Journal of Math. and Phys. (1961), 40, 72: Stroud & Secrest (1966).

    MathSciNet  MATH  Google Scholar 

  5. This argument is given in Luke (1969), vol. II.

    Google Scholar 

  6. Laguerre polynomials were suggested by F. Tricomi, R. C. Acad. Nat. dei Lincei 21 (1935), 232 and D. V. Widder, Duke Math. J., 1 (1935), 126. Their practical use was developed by W. T. Weeks, J. ACM. 13 (1966), 419 and R. Piessens and M. Branders, Proc. IEEE, 118 (1971), 1

    Google Scholar 

  7. W. T. Weeks, J. ACM, 13 (1966), 419.

    Article  MathSciNet  MATH  Google Scholar 

  8. Based on R. Piessens, J. Inst. Maths. Applics. (1972), 10, 185. In the original paper, Piessens writes where theere are Jacobi polynomials. We consider only the special case α = β = −1/2, which forms the main body of Piessens’ pap

    Article  MATH  Google Scholar 

  9. We have corrected Piessens formulae for the coefficients to remove some errors.

    Google Scholar 

  10. Rivlin (1974), p. 47.

    Google Scholar 

  11. H. Dubner and J. Abate, J. ACM. 15 (1968), 115. M. Silverberg, Electron Lett. 6 (1970), 105.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Durbin, Comput. J., 17 (1974), 371.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. R. MacDonald, J. Appl. Phys. 35 (1964); 3034.

    Article  Google Scholar 

  14. J. W. Cooley and J. W. Tukey, Math. Comp., 19 (1965), 297.

    Article  MathSciNet  MATH  Google Scholar 

  15. A very thorough treatment may be found in Luke (1969), vol. II.

    Google Scholar 

  16. I. M. Longman, Int. J. Comp. Math. B, (1971), 3, 53.

    Article  MathSciNet  MATH  Google Scholar 

  17. Obviously such a circumstance would cause peculiar difficulties.

    Google Scholar 

  18. Some other possibilities for the use of Pade approximation are discussed in Luke (1969), vol. II.

    Google Scholar 

  19. See I. M. Longman & M. Sharir, Geophys. J. Roy. Astr. Soc, (1971), 25, 299.

    Article  MATH  Google Scholar 

  20. I. M. Longman, J. Comp. Phys. (1972), 10, 224.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davies, B. (1985). Numerical Inversion of Laplace Transforms. In: Integral Transforms and their Applications. Applied Mathematical Sciences, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-2691-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2691-3_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96080-7

  • Online ISBN: 978-1-4899-2691-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics