Skip to main content

Cross Section Maps for Geodesic Flows, I

The Modular Surface

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 21))

Abstract

In this paper we investigate the relationship between two topics which at first sight seem unrelated. The first deals with ergodic properties of geodesic flows on two-dimensional surfaces of constant negative curvature, a rather active area in the thirties studied by many well known mathematicians. For a detailed survey of the work during that period see [H2]. The second one deals with ergodic properties of noninvertible mappings of the unit interval, a current popular subject and one also with an interesting history going back to Gauss (See [B]). We shall show how each of these subjects sheds light on the other. Ergodic properties of interval maps can be used to prove ergodicity of the flows and conversely. Furthermore, explicit formulas for invariant measures of interval maps can be derived from the invariance of hyperbolic measure for the flows. (Actually we could go a step further and trace a connection of these formulas to Liouville’s theorem for Hamiltonian Systems.) This fact is particularly interesting as there is a paucity of explicit formulas for invariant measures of interval maps and we have here a method of deriving a class of these. In particular we shall show how Gauss’s formula for the invariant measure associated with continued fractions, which seems to have been produced ad hoc, can be derived anew.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Adler and L. Flatto, Cross section maps for the geodesic flow on the modular surface, Ergodic Theory and Dynamical Systems (to appear).

    Google Scholar 

  2. R. L. Adler, M. Keane, and M. Smorodinsky, A construction of a normal number for the continued fraction transformation, J. of Number Theory 13 (1981), 95–105.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. L. Adler and B. Weiss, The ergodic infinite measure preserving transformation of Boole, Israel J. of Math. 16 (1973), 263–278.

    Article  MathSciNet  Google Scholar 

  4. W. Ambrose and S. Kakutani, Structure and continuity of measurable flows, Duke Math. J. 9 (1942), 25–42.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, W. A. Benjamin, Inc. New York, 1968.

    Google Scholar 

  6. E. Artin, Ein Mechanisches System mit quasiergodischen Bahnen, Abh. Math. Sem., Univ. Hamburg 3 (1924), 170–175.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Billingsley, Ergodic Theory and Information, John Wiley & Sons, Inc., New York (1965).

    MATH  Google Scholar 

  8. G. D. Birkhoff, Dynamical Systems, AMS Colloquium pu-blications, vol. 9 (1927), reprinted (1966).

    Google Scholar 

  9. Bowen and C. Series, Markov maps for Fuchsian groups, IHES publications 50 (1979).

    Google Scholar 

  10. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc. New York (1955).

    MATH  Google Scholar 

  11. G. H. Hardy and E. M. Wright, Theory of Numbers, 4th edition, Oxford Univ. Press, London (1962).

    Google Scholar 

  12. G. A. Hedlund, A metrically transitive group defined by the modular group, Amer. J. Math. 57 (1935), 668–678.

    Article  MathSciNet  Google Scholar 

  13. G. A. Hedlund, The dynamics of geodesic flows. Bull. Amer. Math. Soc. 45 (1939), 241–261.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Am. Math. Soc. 77 (1971), 863–877.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635–641.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Lehner, Discontinuous Groups and Automorphic Functions, AMS, Providence, R.I. (1964).

    Google Scholar 

  17. M. Morse, Symbolic dynamics, Institute for Advanced Study Notes, by Rufus Oldenburger, Princeton (1966) (unpublished).

    Google Scholar 

  18. J. Moser, Stable and Random Motions in Dynamical Sys-tems, Annals of Math Studies 77, Princeton Univ. Press, Princeton, NJ (1973).

    Google Scholar 

  19. J. Moser, E. Phillips, and S. Varadhan, Ergodic Theory, A Seminar, Lecture Notes, New York Univ., NY (1975).

    Google Scholar 

  20. J. Nielsen, Untersuchungen zur Topologie der gesch-lossenen Zweiseitigen Flächen, Acta Math. 50 (1927), 189–358.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Ornstein, The isomorphism theorem for Bernoulli flows, Advances in Math 10 (1973), 124–142.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Ornstein and B. Weiss, Geodesic flows are Bernoullian, Israel J. Math 14 (1973), 184–198.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Renyi, Representations for real numbers and their ergodic properties, Acta Math. Akad, Sci. Hungar, 8 (1957), 477–493.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk, SSSR Ser. Mat. 25 (1961), 499–530, Russian, Amer. Math. Soc. Transi., Series 2, vol. 39 (1964), 1-37, English.

    MathSciNet  Google Scholar 

  25. F. Schweiger, Some remarks on ergodicity and invariant measures, Mich.Math. J. 22 (1975), 181–187.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Series, Symbolic dynamics for geodesic flows, Acta Math. 146 (1981), 103–128.

    Article  MathSciNet  MATH  Google Scholar 

  27. —, On coding geodesics with continued fractions, Proc. Ergodic Theory Conf., Plans sur Bex (1980), ed. Pierre de la Harpe, Springer (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adler, R.L., Flatto, L. (1982). Cross Section Maps for Geodesic Flows, I. In: Katok, A. (eds) Ergodic Theory and Dynamical Systems II. Progress in Mathematics, vol 21. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-2689-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2689-0_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3096-6

  • Online ISBN: 978-1-4899-2689-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics