Topological Dynamics on the Interval

Part of the Progress in Mathematics book series (PM, volume 21)


A great deal has been written about maps of the interval, especially in recent years. In addition to many detailed mathematical papers, there have been a number of numerical studies and descriptive works (Co, Fe, GM, HoH, Ma2, MeS, Mr) and studies relating one-dimensional dynamical systems to models in the biological (GOI, HLM, La5–6, Ma1, MaO, WL) and physical (CE, GM1, La3,6, LaR, Lo1–3) sciences. The subject is appealing because it is easy to talk about — very little technical apparatus is needed to pose many problems in the field - and yet one-dimensional systems can exhibit surprizingly complex dynamic behavior.


Periodic Orbit Invariant Measure Periodic Point Topological Entropy Homoclinic Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ad.
    R. Adler, f-expansions revisited, Lect. Notes Math. 318(1973) 1–5.CrossRefGoogle Scholar
  2. Aℓ.
    D. J. Allwright, Hypergraphic functions in recurrence relations, SIAM J. Applied Math. 34(1978) 687–691.MathSciNetzbMATHCrossRefGoogle Scholar
  3. AM.
    R. Adler and M. H. McAndrew, The entropy of Chebyshev polynomials, Trans. AMS 121(1966) 236–241.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Ar.
    V. Arnol’d, Small denominators, I. Mappings of the circumference to itself (Russian) Izv. Akad. Nauk SSSR 25(1961) 21–86 = (English) Transl. AMS (2) 46(1961) 213-284.Google Scholar
  5. AuK.
    J. Auslander and Y. Katznelson, Continuous maps of the circle without periodic points, Israel J. Math. 32(1979) 375–381.MathSciNetzbMATHCrossRefGoogle Scholar
  6. AuY.
    J. Auslander and J. Yorke, Interval maps, factors of maps, and chaos, Tôhoku J. (2) 32(1980) 177–188.MathSciNetzbMATHCrossRefGoogle Scholar
  7. AW.
    R. Adler and B. Weiss, The ergodic infinite measure preserving transformation of Boole, Israel J. Math. 16(1973) 263–278.MathSciNetCrossRefGoogle Scholar
  8. B.
    C. Bernhardt, Rotation intervals of a class of endomorphisms of the circle, Preprint, Carbondale, 1981.Google Scholar
  9. BCN.
    L. Block, E. Coven, and Z. Nitecki, Minimizing topological entropy for maps of the circle, Ergod. Thy. Dyn. Syst., to appear.Google Scholar
  10. BGMY.
    L. Block, J. Guckenheimer, M. Misiurewicz and L. Young, Periodic points and topological entropy of one dimensional maps. Lect. Notes Math. 819 (Springer, 1980) 18-34.Google Scholar
  11. Bℓ1.
    L. Block, Morse-Smale endomorphisms of the circle, Proc. AMS 48(1975) 457–463.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Bℓ2.
    L. Block, Diffeomorphisms obtained from endomorphisms, Trans. AMS 214(1975) 403–413.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Bℓ3.
    L. Block, The periodic points of Morse-Smale endomorphisms of the circle, Trans. AMS 226(1977) 77–88.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Bℓ4.
    L. Block, An example where topological entropy is continuous, Trans. AMS 231(1977) 201–214.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Bℓ5.
    L. Block, Topological entropy at an Ω-explosion, Trans. AMS 235(1978) 323–330.MathSciNetGoogle Scholar
  16. Bℓ6.
    L. Block, Continuous maps of the interval with finite nonwandering set, Trans. AMS 240(1918) 221–230.MathSciNetCrossRefGoogle Scholar
  17. Bℓ7.
    L. Block, Mappings of the interval with finitely many periodic points have zero entropy, Proc. AMS 67(1977) 357–360.MathSciNetCrossRefGoogle Scholar
  18. Bℓ8.
    L. Block, Homociinic points of mappings of the interval, Proc. AMS 72(1978) 576–580.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Bℓ9.
    L. Block, Simple periodic orbits of mappings of the interval, Trans. AMS 254(1979) 391–398.MathSciNetzbMATHGoogle Scholar
  20. Bℓ10.
    L. Block, Periodic orbits of continuous mappings of the circle, Trans. AMS 260(1980) 555–562.MathSciNetCrossRefGoogle Scholar
  21. Bℓ11.
    L. Block, Stability of periodic orbits in the theorem of Šarkovskiĭ, Proc. AMS 81(1981) 333–336.MathSciNetzbMATHGoogle Scholar
  22. Bℓ12.
    L. Block, Periods of periodic points of maps of the circle which have a fixed point, Preprint, Gainesville, 1980Google Scholar
  23. BℓF1.
    L. Block and J. Franke, A classification of the structurally stable contracting endomorphisms of S1, Proc. AMS 36(1972) 592–602.MathSciNetGoogle Scholar
  24. BℓF2.
    L. Block and J. Franke, Existence of periodic points for maps of S1, Invent. math. 22(1973) 69–73.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Bo1.
    R. Bowen, Bernoulli maps of the interval, Israel J. Math. 28(1977) 161–168.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Bo2.
    R. Bowen, Entropy for maps of the interval, Topology 26(1977) 465–467.MathSciNetCrossRefGoogle Scholar
  27. Bo3.
    R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys. 69(1979) 1–17.MathSciNetzbMATHCrossRefGoogle Scholar
  28. BoF.
    R. Bowen and J. Franks, The periodic points of maps of the disk and interval, Topology 15(1976) 337–342.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Bu.
    L. A. Bunimovič, On a transformation of the circle, (Russian) Mat. Zametki 8(1970) 205–216 = (English) Math. Notes 8(1910).MathSciNetGoogle Scholar
  30. By1.
    A. Boyarsky, Randomness implies order, J. Math. Anal. Appl. 76 (1980) 483–497.MathSciNetzbMATHCrossRefGoogle Scholar
  31. By2.
    A. Boyarsky, Approximating the σ-finite measure invariant under a non-expanding map, J. Math. Anal. Appl. 78(1980) 222–232.MathSciNetzbMATHCrossRefGoogle Scholar
  32. ByC.
    A. Boyarsky and S. Cooper, Weak continuity of invariant measures for a class of monotonic transformations, Proc. AMS 80(1980) 574–576.MathSciNetzbMATHCrossRefGoogle Scholar
  33. ByS.
    A. Boyarsky and M. Scarowsky, On a class of transformations which have unique absolutely continuous invariant measures, Trans. AMS 255(1979) 243–262.MathSciNetzbMATHCrossRefGoogle Scholar
  34. CaE.
    M. Campanino and H. Epstein, On the existence of Feigenbaum’s fixedpoint, Comm. Math. Phys. 79(1981) 261–302.MathSciNetzbMATHCrossRefGoogle Scholar
  35. CE1.
    P. Collet and J.-P. Eckmann, Iterated maps on the interval as dynamical systems, Prog. Phy. 1(Birkhäuser, 1980).Google Scholar
  36. CE2.
    P. Collet and J.-P. Eckmann, On the abundance of aperiodic behavior for maps of the interval, Comm. Math. Phys. 73(1980) 115–160.MathSciNetzbMATHCrossRefGoogle Scholar
  37. CEL.
    P. Collet, J.-P. Eckmann, and O. Lanford, Universal properties of maps on an interval, Comm. Math. Phys. 76(1980) 211–254.MathSciNetzbMATHCrossRefGoogle Scholar
  38. CH1.
    E. M. Coven and G. A. Hedlund, Continuous maps of the interval whose periodic points form a closed set, Proc. AMS 79(1980) 127–133.MathSciNetzbMATHCrossRefGoogle Scholar
  39. CH2.
    —, \( \overline {\text{P}} = \overline {\text{R}} \) for maps of the interval, ibid 316-318.Google Scholar
  40. CMN.
    E. M. Coven, J. Madden and Z. Nitecki, A note on generic properties of continuous maps, Preprint, Middletown, 1981.Google Scholar
  41. CN.
    E. M. Coven and Z. Nitecki, Non-wandering sets of the powers of maps of the interval, Ergodic Thy. and Dyn. Syst., To appear.Google Scholar
  42. Co.
    J. Coste, Iterations of transformations on the unit interval: approach to a periodic attractor, J. Stat. Phys. 23(1980) 521–536.MathSciNetzbMATHCrossRefGoogle Scholar
  43. De.
    A. Denjoy, Sur les courbes définies par les équations differentielles à la surface du tore, J. de Math. 11 (1932) 42–49.Google Scholar
  44. DGP.
    B. Derrida, A. Gervois, and Y. Pomeau, Universal metric properties of bifurcations of endomorphisms, J. Phys. A 12(1979) 269–296.MathSciNetzbMATHCrossRefGoogle Scholar
  45. DGS.
    M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Lect. Notes Math. 527 (Springer, 1976).Google Scholar
  46. Dv.
    R. Devaney, Genealogy of periodic points of maps of the interval, Trans. AMS 265(1981) 137–146.MathSciNetzbMATHCrossRefGoogle Scholar
  47. Eb.
    E. Eberlein, Toeplitz-Folgen und Gruppentranslationen, Arch. Math. 22(1971) 291–301.MathSciNetzbMATHCrossRefGoogle Scholar
  48. Fe1.
    M. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19(1978) 25–52.MathSciNetzbMATHCrossRefGoogle Scholar
  49. Fe2.
    M. Feigenbaum, The universal metric properties of nonlinear transformations, J. Stat. Phys. 21(1979) 669–706.MathSciNetzbMATHCrossRefGoogle Scholar
  50. Fr.
    J. Franke, Bifurcation of structurally stable contractions on S1, Preprint, Raleigh, 1978.Google Scholar
  51. G1.
    J. Guckenheimer, On the bifurcation of maps of the interval, Invent. math. 39(1977) 165–178.MathSciNetzbMATHCrossRefGoogle Scholar
  52. G2.
    J. Guckenheimer, The bifurcation of quadratic functions, Ann. N.Y. Acad. Sci. 316(1919) 78–85.MathSciNetCrossRefGoogle Scholar
  53. G3.
    J. Guckenheimer, Bifurcations of dynamical systems, Prog. Math. 8 (Birkhäuser, 1980) 115-231.Google Scholar
  54. G4.
    J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70(1979) 133–160.MathSciNetzbMATHCrossRefGoogle Scholar
  55. G5.
    J. Guckenheimer, The growth of topological entropy for one-dimensional maps, Lect. Notes Math. 819(1980) 216–223.MathSciNetCrossRefGoogle Scholar
  56. GM1.
    I. Gumowski and C. Mira, Recurrences and Discrete Dynamical Systems, Lect. Notes Math. 809 (Springer, 1980).Google Scholar
  57. GM2.
    I. Gumowski and C. Mira, Sur les récurrences, ou transformations ponctuelles, du premier ordre, avec inverse non unique, C. R. Acad. Sci. Paris 280(1915) A905–908.MathSciNetGoogle Scholar
  58. GM3.
    I. Gumowski and C. Mira, Accumulations de bifurcations dans une récurrence. C. R. Acad. Sci. Paris 281(1915) A45–48.MathSciNetGoogle Scholar
  59. GoH.
    W. Gottschalk and G. A. Hedlund, Topological Dynamics, AMS Colloquium Publ. 36(1955).Google Scholar
  60. GoI.
    J. Guckenheimer, G. Oster, and A. Ipaktchi, Dynamics of density dependent population models, J. Math. Bio. 4(1911) 101–147.MathSciNetCrossRefGoogle Scholar
  61. He.
    M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations, Publ. Math. IHES 49(1919) 5–234.Google Scholar
  62. HK.
    F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Preprint, Vienna, 1981.Google Scholar
  63. HLM.
    M. P. Hassell, J. H. Lawton, and R. M. May, Patterns of dynamic behavior in single-species populations, J. Animal Ecology 45(1976) 471–486.CrossRefGoogle Scholar
  64. Hn.
    B. Henry, Escape from the unit interval under the transformation x → λx(1 − x), Proc. AMS 41(1973) 146–150.MathSciNetzbMATHGoogle Scholar
  65. Hofl.
    F. Hofbauer, β-shifts have unique maximal measure, Mh. Math 85(1918) 189–198.MathSciNetCrossRefGoogle Scholar
  66. Hof2.
    F. Hofbauer, Maximal measures for piecewise monotonically increasing transformations on [0,1], Lect. Notes Math. 729(1979) 66–77.MathSciNetCrossRefGoogle Scholar
  67. Hof3.
    F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, (I, II), Israel J. Math. 34(1979) 213–237.MathSciNetzbMATHCrossRefGoogle Scholar
  68. Hof4.
    F. Hofbauer, On intrinsic ergodicity of piecewise monotone transformations with positive entropy III, Preprint, Vienna, 1978.Google Scholar
  69. Hof5.
    F. Hofbauer, The structure of piecewise monotonie transformations, Preprint, Vienna, 1979.Google Scholar
  70. Hof6.
    F. Hofbauer, The topological entropy of the transformation x → αx(1 − x), Mh. Math. 90(1980) 117–141.MathSciNetzbMATHCrossRefGoogle Scholar
  71. Hof7.
    F. Hofbauer, Maximal measures for simple piecewise monotonie transformations, Z. Wahrsch. 52(1980) 289–300.MathSciNetzbMATHCrossRefGoogle Scholar
  72. HoH.
    F. Hoppensteadt and J. Hyman, Periodic solutions of a logistic difference equation, SIAM J. Appl. Math. 32(1977) 73–81.MathSciNetzbMATHCrossRefGoogle Scholar
  73. HoM.
    C. Ho and C. Morris, A graph-theoretic proof of Sharkovsky’s theorem on the periodic points of continuous functions, Preprint, Edwardsville, 1980.Google Scholar
  74. Jal.
    M. V. Jakobson, On smooth mappings of the circle into itself, (Russian) Mat. Sbornik 85(127) (1971) 163–188= (English) Math. USSR Sbornik 14(1971) 161-185.MathSciNetGoogle Scholar
  75. Ja2.
    M. V. Jakobson, On the properties of the one-parameter family of dynamical systems x → A · x · e−x (Russian) Usp. Mat. 31(188) (1976) 239–240.MathSciNetGoogle Scholar
  76. Ja3.
    M. V. Jakobson, Topological and metric properties of one-dimensional endomorphisms, (Russian) Dokl. Akad. Nauk SSSR 243(1978) 866–869 = (English) Soviet Math. Doklady 19(1978) 1452-1456.MathSciNetGoogle Scholar
  77. Ja4.
    M. V. Jakobson, Construction of invariant measures absolutely continuous with respect to dx for some maps of the interval, Lect. Notes Math. 819(1980) 246–257.MathSciNetCrossRefGoogle Scholar
  78. Ja5.
    M. V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys., to appear.Google Scholar
  79. Ja6.
    M. V. Jakobson, Invariant measures that are absolutely continuous with respect to dx for one-parameter families of one-dimensional mappings, (Russian) Usp. Nat. Nauk 35(1980) 215–216.MathSciNetzbMATHGoogle Scholar
  80. JM1.
    M. Jabłonski and J. Malczak, The central limit theorem for expanding mappings of a manifold into itself, Preprint, Krakōw, 1980.Google Scholar
  81. JM2.
    M. Jabłonski and J. Malczak, The rate of convergence of iterates of the Frobenius-Perron operator for piecewise monotonie transformations, Preprint, Krakōw, 1980.Google Scholar
  82. Jo.
    L. Jonker, Periodic points and kneading invariants, Proc. London Math. Soc. 39(1979) 428–450.MathSciNetzbMATHCrossRefGoogle Scholar
  83. JoR1.
    L. Jonker and D. Rand, Une borne inférieure pour l’entropie de certaines applications de l’intervalle dans lui-même, C. R. Acad. Sci. Paris 287(A) (1978) 501–502.MathSciNetGoogle Scholar
  84. JoR2.
    L. Jonker and D. Rand, The periodic orbits and entropy of certain maps of the unit interval, J. London Math. Soc. (2) 22(1980) 175–1MathSciNetzbMATHCrossRefGoogle Scholar
  85. JoR3.
    L. Jonker and D. Rand, The nonwandering set of unimodal maps of the interval, C. R. Math. Rep. Acad. Sci. Canada 2(1978/9) 137–140.MathSciNetGoogle Scholar
  86. JoR4.
    L. Jonker and D. Rand, Bifurcations of unimodal maps of the unit interval, ibid 179-181.Google Scholar
  87. JoR5.
    L. Jonker and D. Rand, Bifurcations in one dimension, I: The nonwandering set, Invent. math. 62(1981) 347–365.MathSciNetzbMATHCrossRefGoogle Scholar
  88. JoR6.
    L. Jonker and D. Rand, Bifurcations in one dimension, II: A versai model for bifurcations, Invent, math. 63(1981) 1–16.MathSciNetzbMATHCrossRefGoogle Scholar
  89. Ka.
    A. B. Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math 35(1980) 301–310.MathSciNetzbMATHCrossRefGoogle Scholar
  90. Keal.
    M. Keane, Interval exchange transformations, Math. Z. 141(1915) 25–31.MathSciNetCrossRefGoogle Scholar
  91. Kea2.
    M. Keane, Non-ergodic interval exchange transformations, Israel J. Math. 26(1911) 188–196.MathSciNetCrossRefGoogle Scholar
  92. KeaR.
    M. Keane and G. Rauzy, Stricte ergodicité des échanges d’intervalles, Math. Z. 174(1980) 203–212.MathSciNetzbMATHCrossRefGoogle Scholar
  93. Kee.
    J. Keener, Chaotic behavior in piecewise continuous difference equations, Trans. AMS 261(1980) 589–604.MathSciNetzbMATHCrossRefGoogle Scholar
  94. Ke1.
    G. Keller, Un théorème de la limite centrale pour une class de transformations monotones par morceaux, C. R. Acad. Sci. Paris 291(1980) A155–158.Google Scholar
  95. Key.
    H. Keynes and D. Newton, A minimal, non-uniquely ergodic interval exchange transformation, Math. Z. 148(1976) 101–105.MathSciNetzbMATHCrossRefGoogle Scholar
  96. Ko1.
    R. Kołodziej, An infinite smooth invariant measure for some transformations of a circle, Preprint, Warsaw, 1980.Google Scholar
  97. Kowl.
    Z. Kowalski, Invariant measures for piecewise monotonic transformations, Lect. Notes Math. 472(1975) 77–94.CrossRefGoogle Scholar
  98. Kow2.
    Z. Kowalski, Continuity of invariant measures for piecewise monotonic transformations. Bull. Acad. Polon. Sci. 23(1975) 519–524.zbMATHGoogle Scholar
  99. Kow3.
    Z. Kowalski, Some remarks about invariant measures for piecewise monotonic transformations, Bull, Acad. Polon. Sci. 25(1977) 7–12.zbMATHGoogle Scholar
  100. Kow4.
    Z. Kowalski, Invariant measure for piecewise monotonie transformation has a positive lower bound on its support, Bull. Acad. Polon. Sci. 27(1979) 53–57.zbMATHGoogle Scholar
  101. Kow5.
    Z. Kowalski, Bernoulli properties of piecewise monotonie transformations, ibid 59-61.Google Scholar
  102. Kow6.
    Z. Kowalski, Piecewise monotonie transformations and their invariant measure, ibid 63-69.Google Scholar
  103. La1.
    A. Lasota, On the existence of invariant measures for Markov processes, Ann. Polon. Math 28(1913) 207–211.MathSciNetGoogle Scholar
  104. La2.
    A. Lasota, Invariant measures and functional equations, Aeq. Math. 9(1973) 193–200.MathSciNetzbMATHCrossRefGoogle Scholar
  105. La3.
    A. Lasota, A solution of Ulam’s conjecture on the existence of invariant measures and its applications, Dynamical Systems vol. 2 (Acad. Press, 1976) 47-55.Google Scholar
  106. La4.
    A. Lasota, On mappings isomorphic to r-adic transformations, Ann. Polon. Math. 35(1918) 313–322.MathSciNetGoogle Scholar
  107. La5.
    A. Lasota, Mathematics in the biological sciences, (Polish) Nauka Polska 11(1919) 81–88.Google Scholar
  108. La6.
    A. Lasota, Ergodic problems in biology, Astérisque 50(1911) 239–250.Google Scholar
  109. LaR.
    A. Lasota and P. Rusek, An application of ergodic theory to the determination of the efficiency of clogged drilling bits, (Polish) Arch. Gōrnictwa 19(1974) 281–295.Google Scholar
  110. LaY1.
    A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonie transformations, Trans. AMS 186(1913) 481–488.MathSciNetCrossRefGoogle Scholar
  111. LaY2.
    A. Lasota and J. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories, Bull. Acad. Polon. Sci. 25(1977) 233–238.MathSciNetzbMATHGoogle Scholar
  112. Le.
    F. Ledrappier, Some properties of absolutely continuous measures on an interval, Preprint, Paris 1980.Google Scholar
  113. Li.
    T. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam’s conjecture, J. Approx. Thy. 17(1976) 177–186.zbMATHCrossRefGoogle Scholar
  114. LiMPY.
    T. Li, M. Misiurewicz, G. Pianigiani, and J. Yorke, Odd chaos, To appear.Google Scholar
  115. Lis.
    T. Li and F. Schweiger, The generalized Boole’s transformation is ergodic, Manu. Math. 25(1978) 161–167.MathSciNetzbMATHCrossRefGoogle Scholar
  116. LiY1.
    T. Li and J. Yorke, Period three implies chaos, Am. Math. Monthly 82(1915) 985–992.MathSciNetCrossRefGoogle Scholar
  117. LiY2.
    T. Li and J. Yorke, Ergodic transformations from an interval to itself, Trans. AMS 235(1918) 183–192.MathSciNetCrossRefGoogle Scholar
  118. LiY3.
    T. Li and J. Yorke, Ergodic maps on [0,1] and nonlinear pseudo-random number generators, Nonlin. Anal. Thy. Meth. Appl. 2(1978) 473–481.MathSciNetzbMATHCrossRefGoogle Scholar
  119. Lℓ.
    J. Llibre, Continuous maps of the circle with finitely many periodic points, Preprint, Barcelona, 1979.Google Scholar
  120. Lo1.
    E. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20(1963) 130–141.CrossRefGoogle Scholar
  121. Lo2.
    E. Lorenz, The problem of deducing the climate from the governing equations, Tellus 16(1964) 1–11.CrossRefGoogle Scholar
  122. Lo3.
    E. Lorenz, On the prevalence of aperiodicity in simple systems, Lect. Notes Math. 755(1919) 53–75.MathSciNetCrossRefGoogle Scholar
  123. Ma1.
    R. May, Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos, Science 186(1914) 645–647.CrossRefGoogle Scholar
  124. Ma2.
    R. May, Simple mathematical models with very complicated dynamics, Nature 261(1976) 459–467.CrossRefGoogle Scholar
  125. MaO.
    R. May and G. Oster, Bifurcations and dynamic complexity in simple biological models, Am. Nat. 110(1916) 573–599.CrossRefGoogle Scholar
  126. Mar.
    N. Markley, Homeomorphisms of the circle without periodic points, Proc. London Math. Soc.(3) 20(1910) 688–698.MathSciNetGoogle Scholar
  127. Mas.
    H. Masur, Interval exchange transformations and measured foliations, Preprint, Chicago, 1981.Google Scholar
  128. May.
    D. Mayer, On a 5 function related to the continued fraction transformation, Preprint, Bures-sur-Yvette, 1975.Google Scholar
  129. MeS.
    N. Metropolis, P. Stein, and M. Stein, On finite limit sets for transformations on the unit interval, J. Comb. Thy. A 15(1973) 25–44.MathSciNetzbMATHCrossRefGoogle Scholar
  130. Mi1.
    M. Misiurewicz, On expanding maps of compact manifolds and local homeomorphisms of a circle, Bull. Acad. Polon. Sci. 18(1910) 725–735.MathSciNetGoogle Scholar
  131. Mi2.
    M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. 27(1979) 167–169.MathSciNetzbMATHGoogle Scholar
  132. Mi3.
    M. Misiurewicz, Invariant measures for continuous transformations of [0,1] with zero topological entropy, Lect. Notes Math. 729(1980) 144–152.MathSciNetCrossRefGoogle Scholar
  133. Mi4.
    M. Misiurewicz, Structure of mappings of an interval with zero entropy, Publ. Math. IHES, to appear.Google Scholar
  134. Mi5.
    M. Misiurewicz, Absolutely continuous invariant measures for certain maps of the interval, Publ. Math. IHES, to appear.Google Scholar
  135. MiS1.
    M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone maps, Astérisque 50(1977) 299–310.MathSciNetGoogle Scholar
  136. MiS2.
    M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone maps, Studia Math. 67(1980) 45–63.MathSciNetzbMATHGoogle Scholar
  137. MiT.
    J. Milnor and W. Thurston, On iterated maps of the interval. I, The kneading matrix. II, Periodic points, Preprint, Princeton, 1977.Google Scholar
  138. Mr1.
    C. Mira, Accumulations de bifurcations et “structures boites emboitées” dan les récurrences et transformations ponctuelles, VII Inter. Konf. über nichtlineare Schwingungen (Akademie-Verlag, Berlin 1977) 81-93.Google Scholar
  139. Mr2.
    C. Mira, Structures de bifurcation “boites emboitées” dans les recurrences, ou transformations ponctuelles du premier ordre, dont la fonction présente un seul extrémum. Application à un problème de “chaos” en biologie, C. R. Acad. Sci. Paris 282(1916) A219–A222.MathSciNetGoogle Scholar
  140. Mr3.
    C. Mira, Etude d’un modèle de croissance d’une population biologique en l’absence de recouvrement de générations, C. R. Acad. Sci. 282(1916) A1441–1444.MathSciNetGoogle Scholar
  141. Mr4.
    C. Mira, Dynamique complexe engendrée par une récurrence, ou transformation ponctuelle, continue, linéaire par moreaux, du premier ordre, C. R. Acad. Sci. Paris 285 (1977) A731–734.MathSciNetGoogle Scholar
  142. Mr5.
    C. Mira, Systèmes a dynamique complexe et bifurcations de type “boites emboitées”, cas des récurrences d’ordre l determinées par une fonction a un seul extremum, RAIRO Automatique/Systems Analysis and Control 12(1978) 63–94, 171-190.MathSciNetzbMATHGoogle Scholar
  143. My1.
    P. J. Myrberg, Iteration der reellen Polynome zweites Grades. Ann. Acad. Sci. Fenn. 256A(1958) 1–10, 268A(1959) 1-10, 336A (1963) 1-18.MathSciNetGoogle Scholar
  144. My2.
    P. J. Myrberg, Sur l’itération des polynomes réels quadratiques, J. Math. Pures et Appl. 41(1962) 339–351.MathSciNetzbMATHGoogle Scholar
  145. My3.
    P. J. Myrberg, Iteration der Polynome mit reelen Koeffizienten, Ann. Acad. Sci. Fenn. 374AI(1965) 1–18.Google Scholar
  146. Na.
    M. Nathanson, Permutations, periodicity, and Chaos, J. Comb. Thy. (A) 22(1911) 61–68.MathSciNetCrossRefGoogle Scholar
  147. Ne.
    S. Newhouse, Hyperbolic limit sets, Trans. AMS 167(1972) 125–150.MathSciNetzbMATHCrossRefGoogle Scholar
  148. Ni1.
    Z. Nitecki, Non-singular endomorphisms of the circle, Proc. Symp. Pure Math. 14(1970) 203–220.MathSciNetCrossRefGoogle Scholar
  149. Ni2.
    Z. Nitecki, Factorization of non-singular circle endomorphisms, Dynamical Systems (ed. Peixoto) (Acad. Press, 1973) 367-373.Google Scholar
  150. Ni3.
    Z. Nitecki, Partitions for circle endomorphisms, ibid, 375-388.Google Scholar
  151. Ni4.
    Z. Nitecki, Periodic and limit orbits, and the depth of the center, for piecewise-monotone interval maps, Proc. AMS 80(1980) 511–514.MathSciNetzbMATHCrossRefGoogle Scholar
  152. Pa1.
    W. Parry, On the β-expansion of real numbers, Acta. Math. Acad. Sci. Hungar. 11(1960) 401–416.MathSciNetzbMATHCrossRefGoogle Scholar
  153. Pa2.
    W. Parry, Intrinsic Markov chains, Trans. AMS 112(1964) 55–66.MathSciNetzbMATHCrossRefGoogle Scholar
  154. Pa3.
    W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. AMS 122(1966) 368–378.MathSciNetzbMATHCrossRefGoogle Scholar
  155. Pi1.
    G. Pianigiani, Absolutely continuous invariant measures for the process x n+1 = Axn (1 − xn), Boll. Un. Mat. Ital. 16A(1919) 374–378.MathSciNetGoogle Scholar
  156. Pi2.
    W. Parry, Existence of invariant measures for piecewise continuous transformations, Ann. Polon. Math., to appear.Google Scholar
  157. Pi3.
    W. Parry, First return map and invariant measures, Israel J. Math. 35(1980) 32–48.MathSciNetCrossRefGoogle Scholar
  158. R.
    D. Ruelle, Applications conservant une mesure absolument continue par rapport à dx sur [0,1], Comm. Math. Phys. 55(1977) 47–51.MathSciNetzbMATHCrossRefGoogle Scholar
  159. RZ.
    H. Rüssman and E. Zehnder, On a normal form for symmetric maps of [0, 1], Comm. Math. Phys. 72(1980) 49–53.MathSciNetCrossRefGoogle Scholar
  160. Sa.
    A. Šarkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, (Russian) Ukr. Mat. Z. 16(1964) 61–71.Google Scholar
  161. SBP.
    M. Scarowsky, A. Boyarsky and H. Proppe, Some properties of piecewise linear expanding maps, Nonlin. Anal. Thy. Meth. Appl. 4(1980) 109–121.MathSciNetCrossRefGoogle Scholar
  162. Sg.
    D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math. 35(1978) 260–267.MathSciNetzbMATHCrossRefGoogle Scholar
  163. Si.
    A. A. Simonov, The investigation of piecewise monotone transformations of an interval by the methods of symbolic dynamics, (Russian) Dokl. Akad. Nauk. SSSR 238(1918) 1063 = (English) Soviet Math. Doklady 19(1978) 185-188.MathSciNetGoogle Scholar
  164. Sm.
    M. Smorodinsky, β-automorphisms are Bernoulli shifts, Acta, Math. Acad. Sci. Hungar. 24(1973) 272–278.MathSciNetCrossRefGoogle Scholar
  165. St.
    P. Štefan, A theorem of Šarkovskiĭ on the coexistence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54(1911) 237–248.CrossRefGoogle Scholar
  166. Str.
    P. Straffin, Periodic points of continuous functions, Math. Mag. 51(1978) 99–105.MathSciNetzbMATHCrossRefGoogle Scholar
  167. SW.
    S. Smale and R. F. Williams, The qualitative analysis of a difference equation of population growth, J. Math. Bio. 3(1916) 1–4.MathSciNetCrossRefGoogle Scholar
  168. Sz.
    W. Szlenk, Some dynamical properties of certain differentiable mappings of an interval, I. Bol. Soc. Mat. Mex., (to appear). II. This volume.Google Scholar
  169. Ta.
    Y. Takahashi, Isomorphism of α-automorphisms to Markov automorphisms, Osaka J. Math. 10(1913) 175–184.Google Scholar
  170. Ve.
    W. Veech, Interval exchange transformations, J. d’Anal. 33(1918) 222–272. See also work in companion volume.MathSciNetCrossRefGoogle Scholar
  171. K.
    E. R. vanKampen, The topological transformations of a simple closed curve into itself, Am. J. Math. 57(1935) 142–152.CrossRefGoogle Scholar
  172. Wa1.
    P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. AMS 236(1918) 121–153.MathSciNetCrossRefGoogle Scholar
  173. Wa2.
    P. Walters, Equilibrium states for β-transformations and related transformations, Math. Z. 159(1918) 65–88.MathSciNetCrossRefGoogle Scholar
  174. Wg.
    G. Wagner, The ergodic behavior of piecewise monotonic transformations, Z. Wahrsch. 46(1919) 317–324.CrossRefGoogle Scholar
  175. Wi.
    K. Wilkinson, Ergodic properties of certain linear mod one transformations, Adv. Math. 14(1914) 64–72.MathSciNetCrossRefGoogle Scholar
  176. WL.
    M. Ważewska-Czyżewska and A. Lasota, Mathematical problems in the dynamics of the red corpuscle system, (Polish) Mat. Stos. 6(1976) 23–40.MathSciNetzbMATHGoogle Scholar
  177. Wo1.
    S. Wong, A central limit theorem for piecewise monotonie mappings of the unit interval, Ann. Prob. 7(1919) 500–514.CrossRefGoogle Scholar
  178. Wo2.
    S. Wong, Some metric properties of piecewise monotonie mappings of the unit interval, Trans. AMS 246(1918) 493–500.CrossRefGoogle Scholar
  179. Wo3.
    S. Wong, Hölder continuous derivatives and ergodic theory, J. London Math. Soc. (2) 22(1980) 506–520.MathSciNetzbMATHCrossRefGoogle Scholar
  180. Y1.
    L. S. Young, A closing lemma on the interval, Invent, math. 54(1979) 179–187.MathSciNetzbMATHCrossRefGoogle Scholar
  181. Y2.
    L. S. Young, On the prevalence of horseshoes, Trans. AMS 263(1981) 75–88.zbMATHCrossRefGoogle Scholar
  182. Ya.
    K. Yano, Topologically stable homeomorphisms of the circle, Nagoya Math. J. 79(1980) 145–149.MathSciNetzbMATHGoogle Scholar
  183. Z.
    H. Žołądek, On bifurcations of orientation reversing diffeomorphisms of the circle, Astérisque 51(1978) 473–487.zbMATHGoogle Scholar
  184. Aℓu.
    I. C. Alufohai, A class of weak Bernoulli tranfomations associated with representations of real numbers, J. London Math. Soc. (2) 23(1981) 295–302.MathSciNetzbMATHCrossRefGoogle Scholar
  185. B2.
    C. Bernhardt, Periodic points of a class of endomorphisms of the circle. Preprint, Carbondale, 1980.Google Scholar
  186. Bℓ13.
    L. Block, Periodic singularities of one pararnenter families of maps of the interval. Preprint, Gainesville, 1981.Google Scholar
  187. By3.
    A. Boyarsky, Continuity of measures for families of non-expanding maps. Preprint, Montreal 1981.Google Scholar
  188. ByF.
    A. Boyarsky and N. Friedman, Irreducibility and primitivity using Markov maps, Lin. Alg. Appl. 37(1981) 103–117.MathSciNetzbMATHCrossRefGoogle Scholar
  189. ByH.
    A. Boyarsky and G. Haddad, All invariant densities of piecewise linear Markov maps are piecewise constant. Preprint, Montreal 1981.Google Scholar
  190. ByP.
    A. Boyarsky and H. Proppe, On the fullness of surjective maps of an interval. Preprint, Montreal 1981.Google Scholar
  191. CET.
    P. Collet, J. P. Eckmann, and L. Thomas, A note on the power spectrum of the iterates of Feigenbaum’s function. Preprint, Geneva, 1981.Google Scholar
  192. Cos1.
    M. Y. Cosnard, On the behavior of successive approximations, SIAM J. Num. Anal. 16(1979) 300–310.MathSciNetzbMATHCrossRefGoogle Scholar
  193. Cos2.
    M. Y. Cosnard, É tude du chaos dans l’iteration d’une transformation ponctuelle du premier ordre. Application à des modeles de biologie, C. R. Acad. Sci. Paris 286(1978) A639–A642.MathSciNetGoogle Scholar
  194. CosE.
    M. Y. Cosnard and A. Eberhard, Sur les cycles d’une application continue de la variable réele. Sem. Anal. Num. 274, USMG Lab. Math. Appl. Grenoble, 1977.Google Scholar
  195. Deℓ1.
    J. P. Delahaye, A counterexample concerning iteratively generated sequences, J. Math. Anal. Appl. 75(1980) 236–241.MathSciNetzbMATHCrossRefGoogle Scholar
  196. Deℓ2.
    —, Cycles d’ordre 2i et convergence cyclique de la methode des approximations successives. Preprint, Lille, 1980.Google Scholar
  197. Deℓ3.
    —, Cycles des fonctions continues et topologie de C[0,1]. Preprint, Lille, 1981.Google Scholar
  198. DK.
    M. Denker and M. Keane, Eine Bemerkung zur topologischen entropie, Mh. Math. 85(1978) 177–183.MathSciNetzbMATHCrossRefGoogle Scholar
  199. Fe3.
    M. Feigenbaum, Metric universality in nonlinear recurrence, Lect. Notes Phys. 93(1979) 163–166.MathSciNetCrossRefGoogle Scholar
  200. FY.
    H. Fujisada and T. Yamada, Theoretical study of time correlation functions in a discrete chaotic process, Z. Naturforsch. 33a(1978) 1455–1460.Google Scholar
  201. Hℓ.
    C. R. Hall, A C Denjoy counterexample. Preprint, Minneapolis, 1981.Google Scholar
  202. Hr1.
    J. Harrison, Wandering intervals. Preprint, Oxford, 1981.Google Scholar
  203. Hr2.
    —, Smoothing Denjoy diffeomorphisms. Preprint, Berkeley, 1981.Google Scholar
  204. HZ.
    B. A. Huberman and A. B. Zisook, Power spectra of strange attractors, Phys. Rev. Lett. 46(1981) 626–628.MathSciNetCrossRefGoogle Scholar
  205. I.
    R. Ito, Rotation sets are closed, Math. Proc. Comb. Phil. Soc. 89(1981) 107–111.zbMATHCrossRefGoogle Scholar
  206. KT.
    T. Kai and K. Tomita, Statistical mechanics of deterministic chaos-the case of one-dimensional discrete processes, Prog. Theor. Phys. 64(1980) 1531–1550.MathSciNetCrossRefGoogle Scholar
  207. Ma3.
    R. M. May, Bifurcations and dynamic complexity in ecological systems, Ann. N.Y. Acad. Sci. 316(1979) 517–529.CrossRefGoogle Scholar
  208. MaO2.
    R. M. May and G. Oster, Period doubling and the onset of turbulence: an analytic estimate of the Feigenbaum ratio, Phys. Letters 78A(1980) 1–3.MathSciNetGoogle Scholar
  209. McD.
    D. McDuff, C1-minimal subsets of the circle, Ann. Inst. Fourier, Grenoble 311(1981) 177–193.MathSciNetGoogle Scholar
  210. MH.
    C. Mayer-Kress and H. Haken, Intermittent behavior of the logistic system, Phys. Letters 82A(1981) 151–155.MathSciNetGoogle Scholar
  211. Mu.
    I. Mulvey, The Birkhoff center for continuous maps of the circle. Preprint, Middletown, 1981.Google Scholar
  212. Ni5.
    Z. Nitecki, Maps of the interval with closed periodic set. Preprint, Medford, 1981.Google Scholar
  213. O1.
    Y. Oono, Period ≠ 2n implies chaos, Prog. Theor. Phys. 59(1978) 1028–1030.CrossRefGoogle Scholar
  214. O2.
    Y. Oono, A heuristic approach to the Kolmogorov entropy as a disorder parameter, Prog. Theor. Phys. 60(1918) 1944–1946.CrossRefGoogle Scholar
  215. OKY.
    Y. Oono, T. Kohda, and H. Yamazaki, Disorder parameter for chaos, J. Phys. Soc. Japan 48(1980) 738–745.MathSciNetCrossRefGoogle Scholar
  216. Pa4.
    W. Parry, The Lorenz attractor and a related population model, Lect. Notes Math. 729(1919) 169–187.MathSciNetCrossRefGoogle Scholar
  217. Rh.
    F. Rhodes, Kneading of Lorenz type for intervals and product spaces, Math. Proc. Camb. Phil. Soc. 89(1981) 167–179.MathSciNetzbMATHCrossRefGoogle Scholar
  218. Sa2.
    A. N. Šarkovskiĭ, On the reducibility of a continuous function of a real variable and the structure of the stationary points of the corresponding iterative process, (Russian) Dokl. ANSSR 139 (1961) 1067–1070 = (English) Soviet Math. Dokl. 2(1961) 1062-1064.Google Scholar
  219. Sa3.
    A. N. Šarkovskiĭ, Attracted and attracting sets. (Russian) Dokl. ANSSSR 160(1965) 1036–1038) = (English) Soviet Math. Dokl. 6(1965) 268-270.Google Scholar
  220. Sa4.
    A. N. Šarkovskiĭ, A classification of fixed points. (Ukrainian) Ukrain. Mat. Ž 17(1965) No. 5, 80-95 = (English) AMS Transl. (2) 97 (1970) 159-179.Google Scholar
  221. Sa5.
    A. N. Šarkovskiĭ, Behavior of a mapping in the neighborhood of an attracting set. (Ukrainian) Ukrain. Mat. Ž. 18(1966) No. 2, 60-83 = (English) AMS Transi. (2) 97(1970) 227-258.Google Scholar
  222. Sa6.
    A. N. Šarkovskiĭ, The partially ordered system of attracting sets. (Russian) Dokl. ANSSSR 170, 6(1966) 1276-1278 = (English) Soviet Math. Dokl. 7(1966) 1384-1386.Google Scholar
  223. Sa7.
    A. N. Šarkovskiĭ, Characterization of the cosine. (Russian) Aeq. Math. 9(1973) 121–128.CrossRefGoogle Scholar
  224. SK.
    S. J. Shenker and L. Kadanoff, Band to band hopping in one-dimensional maps, J. Phys. A 24(1981) L23–L26.MathSciNetCrossRefGoogle Scholar
  225. SMMS.
    A. Shibata, T. Mayuyama, M. Mizutani, and N. Saitô, The nature of chaos in a simple dynamical system, Z. Naturforsch. 34a (1979) 1283–1289.Google Scholar
  226. TG1.
    S. Thomae and S. Grossmann, Invariant distributions and stationary correlation functions of one-dimensional discrete processes, Z. Naturforsch. 32a(1977) 1353–1363.MathSciNetGoogle Scholar
  227. TG2.
    S. Thomae and S. Grossmann, A scaling property in critical spectra of discrete systems, Phys. Lett. 83A(1981) 181–183.Google Scholar
  228. Ve2.
    W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. Math., to appear.Google Scholar
  229. Wo4.
    S. Wong, Two probabilistic properties of weak-Bernoulli interval maps. Preprint, New York, 1981.Google Scholar
  230. WS.
    A. Wolf and J. Swift, Universal power spectra for the reverse bifurcation sequence, Phys. Lett. 83A(1981) 184–187.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  1. 1.Tufts UniversityUSA

Personalised recommendations