Skip to main content

Topological Dynamics on the Interval

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 21))

Abstract

A great deal has been written about maps of the interval, especially in recent years. In addition to many detailed mathematical papers, there have been a number of numerical studies and descriptive works (Co, Fe, GM, HoH, Ma2, MeS, Mr) and studies relating one-dimensional dynamical systems to models in the biological (GOI, HLM, La5–6, Ma1, MaO, WL) and physical (CE, GM1, La3,6, LaR, Lo1–3) sciences. The subject is appealing because it is easy to talk about — very little technical apparatus is needed to pose many problems in the field - and yet one-dimensional systems can exhibit surprizingly complex dynamic behavior.

The erratum of this chapter is available at http://dx.doi.org/10.1007/978-1-4899-2689-0_8

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adler, f-expansions revisited, Lect. Notes Math. 318(1973) 1–5.

    Article  Google Scholar 

  2. D. J. Allwright, Hypergraphic functions in recurrence relations, SIAM J. Applied Math. 34(1978) 687–691.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Adler and M. H. McAndrew, The entropy of Chebyshev polynomials, Trans. AMS 121(1966) 236–241.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Arnol’d, Small denominators, I. Mappings of the circumference to itself (Russian) Izv. Akad. Nauk SSSR 25(1961) 21–86 = (English) Transl. AMS (2) 46(1961) 213-284.

    Google Scholar 

  5. J. Auslander and Y. Katznelson, Continuous maps of the circle without periodic points, Israel J. Math. 32(1979) 375–381.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Auslander and J. Yorke, Interval maps, factors of maps, and chaos, Tôhoku J. (2) 32(1980) 177–188.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Adler and B. Weiss, The ergodic infinite measure preserving transformation of Boole, Israel J. Math. 16(1973) 263–278.

    Article  MathSciNet  Google Scholar 

  8. C. Bernhardt, Rotation intervals of a class of endomorphisms of the circle, Preprint, Carbondale, 1981.

    Google Scholar 

  9. L. Block, E. Coven, and Z. Nitecki, Minimizing topological entropy for maps of the circle, Ergod. Thy. Dyn. Syst., to appear.

    Google Scholar 

  10. L. Block, J. Guckenheimer, M. Misiurewicz and L. Young, Periodic points and topological entropy of one dimensional maps. Lect. Notes Math. 819 (Springer, 1980) 18-34.

    Google Scholar 

  11. L. Block, Morse-Smale endomorphisms of the circle, Proc. AMS 48(1975) 457–463.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Block, Diffeomorphisms obtained from endomorphisms, Trans. AMS 214(1975) 403–413.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Block, The periodic points of Morse-Smale endomorphisms of the circle, Trans. AMS 226(1977) 77–88.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Block, An example where topological entropy is continuous, Trans. AMS 231(1977) 201–214.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Block, Topological entropy at an Ω-explosion, Trans. AMS 235(1978) 323–330.

    MathSciNet  Google Scholar 

  16. L. Block, Continuous maps of the interval with finite nonwandering set, Trans. AMS 240(1918) 221–230.

    Article  MathSciNet  Google Scholar 

  17. L. Block, Mappings of the interval with finitely many periodic points have zero entropy, Proc. AMS 67(1977) 357–360.

    Article  MathSciNet  Google Scholar 

  18. L. Block, Homociinic points of mappings of the interval, Proc. AMS 72(1978) 576–580.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Block, Simple periodic orbits of mappings of the interval, Trans. AMS 254(1979) 391–398.

    MathSciNet  MATH  Google Scholar 

  20. L. Block, Periodic orbits of continuous mappings of the circle, Trans. AMS 260(1980) 555–562.

    Article  MathSciNet  Google Scholar 

  21. L. Block, Stability of periodic orbits in the theorem of Šarkovskiĭ, Proc. AMS 81(1981) 333–336.

    MathSciNet  MATH  Google Scholar 

  22. L. Block, Periods of periodic points of maps of the circle which have a fixed point, Preprint, Gainesville, 1980

    Google Scholar 

  23. L. Block and J. Franke, A classification of the structurally stable contracting endomorphisms of S1, Proc. AMS 36(1972) 592–602.

    MathSciNet  Google Scholar 

  24. L. Block and J. Franke, Existence of periodic points for maps of S1, Invent. math. 22(1973) 69–73.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Bowen, Bernoulli maps of the interval, Israel J. Math. 28(1977) 161–168.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Bowen, Entropy for maps of the interval, Topology 26(1977) 465–467.

    Article  MathSciNet  Google Scholar 

  27. R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys. 69(1979) 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Bowen and J. Franks, The periodic points of maps of the disk and interval, Topology 15(1976) 337–342.

    Article  MathSciNet  MATH  Google Scholar 

  29. L. A. Bunimovič, On a transformation of the circle, (Russian) Mat. Zametki 8(1970) 205–216 = (English) Math. Notes 8(1910).

    MathSciNet  Google Scholar 

  30. A. Boyarsky, Randomness implies order, J. Math. Anal. Appl. 76 (1980) 483–497.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Boyarsky, Approximating the σ-finite measure invariant under a non-expanding map, J. Math. Anal. Appl. 78(1980) 222–232.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Boyarsky and S. Cooper, Weak continuity of invariant measures for a class of monotonic transformations, Proc. AMS 80(1980) 574–576.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Boyarsky and M. Scarowsky, On a class of transformations which have unique absolutely continuous invariant measures, Trans. AMS 255(1979) 243–262.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Campanino and H. Epstein, On the existence of Feigenbaum’s fixedpoint, Comm. Math. Phys. 79(1981) 261–302.

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Collet and J.-P. Eckmann, Iterated maps on the interval as dynamical systems, Prog. Phy. 1(Birkhäuser, 1980).

    Google Scholar 

  36. P. Collet and J.-P. Eckmann, On the abundance of aperiodic behavior for maps of the interval, Comm. Math. Phys. 73(1980) 115–160.

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Collet, J.-P. Eckmann, and O. Lanford, Universal properties of maps on an interval, Comm. Math. Phys. 76(1980) 211–254.

    Article  MathSciNet  MATH  Google Scholar 

  38. E. M. Coven and G. A. Hedlund, Continuous maps of the interval whose periodic points form a closed set, Proc. AMS 79(1980) 127–133.

    Article  MathSciNet  MATH  Google Scholar 

  39. —, \( \overline {\text{P}} = \overline {\text{R}} \) for maps of the interval, ibid 316-318.

    Google Scholar 

  40. E. M. Coven, J. Madden and Z. Nitecki, A note on generic properties of continuous maps, Preprint, Middletown, 1981.

    Google Scholar 

  41. E. M. Coven and Z. Nitecki, Non-wandering sets of the powers of maps of the interval, Ergodic Thy. and Dyn. Syst., To appear.

    Google Scholar 

  42. J. Coste, Iterations of transformations on the unit interval: approach to a periodic attractor, J. Stat. Phys. 23(1980) 521–536.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Denjoy, Sur les courbes définies par les équations differentielles à la surface du tore, J. de Math. 11 (1932) 42–49.

    Google Scholar 

  44. B. Derrida, A. Gervois, and Y. Pomeau, Universal metric properties of bifurcations of endomorphisms, J. Phys. A 12(1979) 269–296.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Lect. Notes Math. 527 (Springer, 1976).

    Google Scholar 

  46. R. Devaney, Genealogy of periodic points of maps of the interval, Trans. AMS 265(1981) 137–146.

    Article  MathSciNet  MATH  Google Scholar 

  47. E. Eberlein, Toeplitz-Folgen und Gruppentranslationen, Arch. Math. 22(1971) 291–301.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19(1978) 25–52.

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Feigenbaum, The universal metric properties of nonlinear transformations, J. Stat. Phys. 21(1979) 669–706.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Franke, Bifurcation of structurally stable contractions on S1, Preprint, Raleigh, 1978.

    Google Scholar 

  51. J. Guckenheimer, On the bifurcation of maps of the interval, Invent. math. 39(1977) 165–178.

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Guckenheimer, The bifurcation of quadratic functions, Ann. N.Y. Acad. Sci. 316(1919) 78–85.

    Article  MathSciNet  Google Scholar 

  53. J. Guckenheimer, Bifurcations of dynamical systems, Prog. Math. 8 (Birkhäuser, 1980) 115-231.

    Google Scholar 

  54. J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70(1979) 133–160.

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Guckenheimer, The growth of topological entropy for one-dimensional maps, Lect. Notes Math. 819(1980) 216–223.

    Article  MathSciNet  Google Scholar 

  56. I. Gumowski and C. Mira, Recurrences and Discrete Dynamical Systems, Lect. Notes Math. 809 (Springer, 1980).

    Google Scholar 

  57. I. Gumowski and C. Mira, Sur les récurrences, ou transformations ponctuelles, du premier ordre, avec inverse non unique, C. R. Acad. Sci. Paris 280(1915) A905–908.

    MathSciNet  Google Scholar 

  58. I. Gumowski and C. Mira, Accumulations de bifurcations dans une récurrence. C. R. Acad. Sci. Paris 281(1915) A45–48.

    MathSciNet  Google Scholar 

  59. W. Gottschalk and G. A. Hedlund, Topological Dynamics, AMS Colloquium Publ. 36(1955).

    Google Scholar 

  60. J. Guckenheimer, G. Oster, and A. Ipaktchi, Dynamics of density dependent population models, J. Math. Bio. 4(1911) 101–147.

    Article  MathSciNet  Google Scholar 

  61. M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations, Publ. Math. IHES 49(1919) 5–234.

    Google Scholar 

  62. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Preprint, Vienna, 1981.

    Google Scholar 

  63. M. P. Hassell, J. H. Lawton, and R. M. May, Patterns of dynamic behavior in single-species populations, J. Animal Ecology 45(1976) 471–486.

    Article  Google Scholar 

  64. B. Henry, Escape from the unit interval under the transformation x → λx(1 − x), Proc. AMS 41(1973) 146–150.

    MathSciNet  MATH  Google Scholar 

  65. F. Hofbauer, β-shifts have unique maximal measure, Mh. Math 85(1918) 189–198.

    Article  MathSciNet  Google Scholar 

  66. F. Hofbauer, Maximal measures for piecewise monotonically increasing transformations on [0,1], Lect. Notes Math. 729(1979) 66–77.

    Article  MathSciNet  Google Scholar 

  67. F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, (I, II), Israel J. Math. 34(1979) 213–237.

    Article  MathSciNet  MATH  Google Scholar 

  68. F. Hofbauer, On intrinsic ergodicity of piecewise monotone transformations with positive entropy III, Preprint, Vienna, 1978.

    Google Scholar 

  69. F. Hofbauer, The structure of piecewise monotonie transformations, Preprint, Vienna, 1979.

    Google Scholar 

  70. F. Hofbauer, The topological entropy of the transformation x → αx(1 − x), Mh. Math. 90(1980) 117–141.

    Article  MathSciNet  MATH  Google Scholar 

  71. F. Hofbauer, Maximal measures for simple piecewise monotonie transformations, Z. Wahrsch. 52(1980) 289–300.

    Article  MathSciNet  MATH  Google Scholar 

  72. F. Hoppensteadt and J. Hyman, Periodic solutions of a logistic difference equation, SIAM J. Appl. Math. 32(1977) 73–81.

    Article  MathSciNet  MATH  Google Scholar 

  73. C. Ho and C. Morris, A graph-theoretic proof of Sharkovsky’s theorem on the periodic points of continuous functions, Preprint, Edwardsville, 1980.

    Google Scholar 

  74. M. V. Jakobson, On smooth mappings of the circle into itself, (Russian) Mat. Sbornik 85(127) (1971) 163–188= (English) Math. USSR Sbornik 14(1971) 161-185.

    MathSciNet  Google Scholar 

  75. M. V. Jakobson, On the properties of the one-parameter family of dynamical systems x → A · x · e−x (Russian) Usp. Mat. Na.uk 31(188) (1976) 239–240.

    MathSciNet  Google Scholar 

  76. M. V. Jakobson, Topological and metric properties of one-dimensional endomorphisms, (Russian) Dokl. Akad. Nauk SSSR 243(1978) 866–869 = (English) Soviet Math. Doklady 19(1978) 1452-1456.

    MathSciNet  Google Scholar 

  77. M. V. Jakobson, Construction of invariant measures absolutely continuous with respect to dx for some maps of the interval, Lect. Notes Math. 819(1980) 246–257.

    Article  MathSciNet  Google Scholar 

  78. M. V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys., to appear.

    Google Scholar 

  79. M. V. Jakobson, Invariant measures that are absolutely continuous with respect to dx for one-parameter families of one-dimensional mappings, (Russian) Usp. Nat. Nauk 35(1980) 215–216.

    MathSciNet  MATH  Google Scholar 

  80. M. Jabłonski and J. Malczak, The central limit theorem for expanding mappings of a manifold into itself, Preprint, Krakōw, 1980.

    Google Scholar 

  81. M. Jabłonski and J. Malczak, The rate of convergence of iterates of the Frobenius-Perron operator for piecewise monotonie transformations, Preprint, Krakōw, 1980.

    Google Scholar 

  82. L. Jonker, Periodic points and kneading invariants, Proc. London Math. Soc. 39(1979) 428–450.

    Article  MathSciNet  MATH  Google Scholar 

  83. L. Jonker and D. Rand, Une borne inférieure pour l’entropie de certaines applications de l’intervalle dans lui-même, C. R. Acad. Sci. Paris 287(A) (1978) 501–502.

    MathSciNet  Google Scholar 

  84. L. Jonker and D. Rand, The periodic orbits and entropy of certain maps of the unit interval, J. London Math. Soc. (2) 22(1980) 175–1

    Article  MathSciNet  MATH  Google Scholar 

  85. L. Jonker and D. Rand, The nonwandering set of unimodal maps of the interval, C. R. Math. Rep. Acad. Sci. Canada 2(1978/9) 137–140.

    MathSciNet  Google Scholar 

  86. L. Jonker and D. Rand, Bifurcations of unimodal maps of the unit interval, ibid 179-181.

    Google Scholar 

  87. L. Jonker and D. Rand, Bifurcations in one dimension, I: The nonwandering set, Invent. math. 62(1981) 347–365.

    Article  MathSciNet  MATH  Google Scholar 

  88. L. Jonker and D. Rand, Bifurcations in one dimension, II: A versai model for bifurcations, Invent, math. 63(1981) 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  89. A. B. Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math 35(1980) 301–310.

    Article  MathSciNet  MATH  Google Scholar 

  90. M. Keane, Interval exchange transformations, Math. Z. 141(1915) 25–31.

    Article  MathSciNet  Google Scholar 

  91. M. Keane, Non-ergodic interval exchange transformations, Israel J. Math. 26(1911) 188–196.

    Article  MathSciNet  Google Scholar 

  92. M. Keane and G. Rauzy, Stricte ergodicité des échanges d’intervalles, Math. Z. 174(1980) 203–212.

    Article  MathSciNet  MATH  Google Scholar 

  93. J. Keener, Chaotic behavior in piecewise continuous difference equations, Trans. AMS 261(1980) 589–604.

    Article  MathSciNet  MATH  Google Scholar 

  94. G. Keller, Un théorème de la limite centrale pour une class de transformations monotones par morceaux, C. R. Acad. Sci. Paris 291(1980) A155–158.

    Google Scholar 

  95. H. Keynes and D. Newton, A minimal, non-uniquely ergodic interval exchange transformation, Math. Z. 148(1976) 101–105.

    Article  MathSciNet  MATH  Google Scholar 

  96. R. Kołodziej, An infinite smooth invariant measure for some transformations of a circle, Preprint, Warsaw, 1980.

    Google Scholar 

  97. Z. Kowalski, Invariant measures for piecewise monotonic transformations, Lect. Notes Math. 472(1975) 77–94.

    Article  Google Scholar 

  98. Z. Kowalski, Continuity of invariant measures for piecewise monotonic transformations. Bull. Acad. Polon. Sci. 23(1975) 519–524.

    MATH  Google Scholar 

  99. Z. Kowalski, Some remarks about invariant measures for piecewise monotonic transformations, Bull, Acad. Polon. Sci. 25(1977) 7–12.

    MATH  Google Scholar 

  100. Z. Kowalski, Invariant measure for piecewise monotonie transformation has a positive lower bound on its support, Bull. Acad. Polon. Sci. 27(1979) 53–57.

    MATH  Google Scholar 

  101. Z. Kowalski, Bernoulli properties of piecewise monotonie transformations, ibid 59-61.

    Google Scholar 

  102. Z. Kowalski, Piecewise monotonie transformations and their invariant measure, ibid 63-69.

    Google Scholar 

  103. A. Lasota, On the existence of invariant measures for Markov processes, Ann. Polon. Math 28(1913) 207–211.

    MathSciNet  Google Scholar 

  104. A. Lasota, Invariant measures and functional equations, Aeq. Math. 9(1973) 193–200.

    Article  MathSciNet  MATH  Google Scholar 

  105. A. Lasota, A solution of Ulam’s conjecture on the existence of invariant measures and its applications, Dynamical Systems vol. 2 (Acad. Press, 1976) 47-55.

    Google Scholar 

  106. A. Lasota, On mappings isomorphic to r-adic transformations, Ann. Polon. Math. 35(1918) 313–322.

    MathSciNet  Google Scholar 

  107. A. Lasota, Mathematics in the biological sciences, (Polish) Nauka Polska 11(1919) 81–88.

    Google Scholar 

  108. A. Lasota, Ergodic problems in biology, Astérisque 50(1911) 239–250.

    Google Scholar 

  109. A. Lasota and P. Rusek, An application of ergodic theory to the determination of the efficiency of clogged drilling bits, (Polish) Arch. Gōrnictwa 19(1974) 281–295.

    Google Scholar 

  110. A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonie transformations, Trans. AMS 186(1913) 481–488.

    Article  MathSciNet  Google Scholar 

  111. A. Lasota and J. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories, Bull. Acad. Polon. Sci. 25(1977) 233–238.

    MathSciNet  MATH  Google Scholar 

  112. F. Ledrappier, Some properties of absolutely continuous measures on an interval, Preprint, Paris 1980.

    Google Scholar 

  113. T. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam’s conjecture, J. Approx. Thy. 17(1976) 177–186.

    Article  MATH  Google Scholar 

  114. T. Li, M. Misiurewicz, G. Pianigiani, and J. Yorke, Odd chaos, To appear.

    Google Scholar 

  115. T. Li and F. Schweiger, The generalized Boole’s transformation is ergodic, Manu. Math. 25(1978) 161–167.

    Article  MathSciNet  MATH  Google Scholar 

  116. T. Li and J. Yorke, Period three implies chaos, Am. Math. Monthly 82(1915) 985–992.

    Article  MathSciNet  Google Scholar 

  117. T. Li and J. Yorke, Ergodic transformations from an interval to itself, Trans. AMS 235(1918) 183–192.

    Article  MathSciNet  Google Scholar 

  118. T. Li and J. Yorke, Ergodic maps on [0,1] and nonlinear pseudo-random number generators, Nonlin. Anal. Thy. Meth. Appl. 2(1978) 473–481.

    Article  MathSciNet  MATH  Google Scholar 

  119. J. Llibre, Continuous maps of the circle with finitely many periodic points, Preprint, Barcelona, 1979.

    Google Scholar 

  120. E. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20(1963) 130–141.

    Article  Google Scholar 

  121. E. Lorenz, The problem of deducing the climate from the governing equations, Tellus 16(1964) 1–11.

    Article  Google Scholar 

  122. E. Lorenz, On the prevalence of aperiodicity in simple systems, Lect. Notes Math. 755(1919) 53–75.

    Article  MathSciNet  Google Scholar 

  123. R. May, Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos, Science 186(1914) 645–647.

    Article  Google Scholar 

  124. R. May, Simple mathematical models with very complicated dynamics, Nature 261(1976) 459–467.

    Article  Google Scholar 

  125. R. May and G. Oster, Bifurcations and dynamic complexity in simple biological models, Am. Nat. 110(1916) 573–599.

    Article  Google Scholar 

  126. N. Markley, Homeomorphisms of the circle without periodic points, Proc. London Math. Soc.(3) 20(1910) 688–698.

    MathSciNet  Google Scholar 

  127. H. Masur, Interval exchange transformations and measured foliations, Preprint, Chicago, 1981.

    Google Scholar 

  128. D. Mayer, On a 5 function related to the continued fraction transformation, Preprint, Bures-sur-Yvette, 1975.

    Google Scholar 

  129. N. Metropolis, P. Stein, and M. Stein, On finite limit sets for transformations on the unit interval, J. Comb. Thy. A 15(1973) 25–44.

    Article  MathSciNet  MATH  Google Scholar 

  130. M. Misiurewicz, On expanding maps of compact manifolds and local homeomorphisms of a circle, Bull. Acad. Polon. Sci. 18(1910) 725–735.

    MathSciNet  Google Scholar 

  131. M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. 27(1979) 167–169.

    MathSciNet  MATH  Google Scholar 

  132. M. Misiurewicz, Invariant measures for continuous transformations of [0,1] with zero topological entropy, Lect. Notes Math. 729(1980) 144–152.

    Article  MathSciNet  Google Scholar 

  133. M. Misiurewicz, Structure of mappings of an interval with zero entropy, Publ. Math. IHES, to appear.

    Google Scholar 

  134. M. Misiurewicz, Absolutely continuous invariant measures for certain maps of the interval, Publ. Math. IHES, to appear.

    Google Scholar 

  135. M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone maps, Astérisque 50(1977) 299–310.

    MathSciNet  Google Scholar 

  136. M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone maps, Studia Math. 67(1980) 45–63.

    MathSciNet  MATH  Google Scholar 

  137. J. Milnor and W. Thurston, On iterated maps of the interval. I, The kneading matrix. II, Periodic points, Preprint, Princeton, 1977.

    Google Scholar 

  138. C. Mira, Accumulations de bifurcations et “structures boites emboitées” dan les récurrences et transformations ponctuelles, VII Inter. Konf. über nichtlineare Schwingungen (Akademie-Verlag, Berlin 1977) 81-93.

    Google Scholar 

  139. C. Mira, Structures de bifurcation “boites emboitées” dans les recurrences, ou transformations ponctuelles du premier ordre, dont la fonction présente un seul extrémum. Application à un problème de “chaos” en biologie, C. R. Acad. Sci. Paris 282(1916) A219–A222.

    MathSciNet  Google Scholar 

  140. C. Mira, Etude d’un modèle de croissance d’une population biologique en l’absence de recouvrement de générations, C. R. Acad. Sci. 282(1916) A1441–1444.

    MathSciNet  Google Scholar 

  141. C. Mira, Dynamique complexe engendrée par une récurrence, ou transformation ponctuelle, continue, linéaire par moreaux, du premier ordre, C. R. Acad. Sci. Paris 285 (1977) A731–734.

    MathSciNet  Google Scholar 

  142. C. Mira, Systèmes a dynamique complexe et bifurcations de type “boites emboitées”, cas des récurrences d’ordre l determinées par une fonction a un seul extremum, RAIRO Automatique/Systems Analysis and Control 12(1978) 63–94, 171-190.

    MathSciNet  MATH  Google Scholar 

  143. P. J. Myrberg, Iteration der reellen Polynome zweites Grades. Ann. Acad. Sci. Fenn. 256A(1958) 1–10, 268A(1959) 1-10, 336A (1963) 1-18.

    MathSciNet  Google Scholar 

  144. P. J. Myrberg, Sur l’itération des polynomes réels quadratiques, J. Math. Pures et Appl. 41(1962) 339–351.

    MathSciNet  MATH  Google Scholar 

  145. P. J. Myrberg, Iteration der Polynome mit reelen Koeffizienten, Ann. Acad. Sci. Fenn. 374AI(1965) 1–18.

    Google Scholar 

  146. M. Nathanson, Permutations, periodicity, and Chaos, J. Comb. Thy. (A) 22(1911) 61–68.

    Article  MathSciNet  Google Scholar 

  147. S. Newhouse, Hyperbolic limit sets, Trans. AMS 167(1972) 125–150.

    Article  MathSciNet  MATH  Google Scholar 

  148. Z. Nitecki, Non-singular endomorphisms of the circle, Proc. Symp. Pure Math. 14(1970) 203–220.

    Article  MathSciNet  Google Scholar 

  149. Z. Nitecki, Factorization of non-singular circle endomorphisms, Dynamical Systems (ed. Peixoto) (Acad. Press, 1973) 367-373.

    Google Scholar 

  150. Z. Nitecki, Partitions for circle endomorphisms, ibid, 375-388.

    Google Scholar 

  151. Z. Nitecki, Periodic and limit orbits, and the depth of the center, for piecewise-monotone interval maps, Proc. AMS 80(1980) 511–514.

    Article  MathSciNet  MATH  Google Scholar 

  152. W. Parry, On the β-expansion of real numbers, Acta. Math. Acad. Sci. Hungar. 11(1960) 401–416.

    Article  MathSciNet  MATH  Google Scholar 

  153. W. Parry, Intrinsic Markov chains, Trans. AMS 112(1964) 55–66.

    Article  MathSciNet  MATH  Google Scholar 

  154. W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. AMS 122(1966) 368–378.

    Article  MathSciNet  MATH  Google Scholar 

  155. G. Pianigiani, Absolutely continuous invariant measures for the process x n+1 = Axn (1 − xn), Boll. Un. Mat. Ital. 16A(1919) 374–378.

    MathSciNet  Google Scholar 

  156. W. Parry, Existence of invariant measures for piecewise continuous transformations, Ann. Polon. Math., to appear.

    Google Scholar 

  157. W. Parry, First return map and invariant measures, Israel J. Math. 35(1980) 32–48.

    Article  MathSciNet  Google Scholar 

  158. D. Ruelle, Applications conservant une mesure absolument continue par rapport à dx sur [0,1], Comm. Math. Phys. 55(1977) 47–51.

    Article  MathSciNet  MATH  Google Scholar 

  159. H. Rüssman and E. Zehnder, On a normal form for symmetric maps of [0, 1], Comm. Math. Phys. 72(1980) 49–53.

    Article  MathSciNet  Google Scholar 

  160. A. Šarkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, (Russian) Ukr. Mat. Z. 16(1964) 61–71.

    Google Scholar 

  161. M. Scarowsky, A. Boyarsky and H. Proppe, Some properties of piecewise linear expanding maps, Nonlin. Anal. Thy. Meth. Appl. 4(1980) 109–121.

    Article  MathSciNet  Google Scholar 

  162. D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math. 35(1978) 260–267.

    Article  MathSciNet  MATH  Google Scholar 

  163. A. A. Simonov, The investigation of piecewise monotone transformations of an interval by the methods of symbolic dynamics, (Russian) Dokl. Akad. Nauk. SSSR 238(1918) 1063 = (English) Soviet Math. Doklady 19(1978) 185-188.

    MathSciNet  Google Scholar 

  164. M. Smorodinsky, β-automorphisms are Bernoulli shifts, Acta, Math. Acad. Sci. Hungar. 24(1973) 272–278.

    Article  MathSciNet  Google Scholar 

  165. P. Štefan, A theorem of Šarkovskiĭ on the coexistence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54(1911) 237–248.

    Article  Google Scholar 

  166. P. Straffin, Periodic points of continuous functions, Math. Mag. 51(1978) 99–105.

    Article  MathSciNet  MATH  Google Scholar 

  167. S. Smale and R. F. Williams, The qualitative analysis of a difference equation of population growth, J. Math. Bio. 3(1916) 1–4.

    Article  MathSciNet  Google Scholar 

  168. W. Szlenk, Some dynamical properties of certain differentiable mappings of an interval, I. Bol. Soc. Mat. Mex., (to appear). II. This volume.

    Google Scholar 

  169. Y. Takahashi, Isomorphism of α-automorphisms to Markov automorphisms, Osaka J. Math. 10(1913) 175–184.

    Google Scholar 

  170. W. Veech, Interval exchange transformations, J. d’Anal. 33(1918) 222–272. See also work in companion volume.

    Article  MathSciNet  Google Scholar 

  171. E. R. vanKampen, The topological transformations of a simple closed curve into itself, Am. J. Math. 57(1935) 142–152.

    Article  Google Scholar 

  172. P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. AMS 236(1918) 121–153.

    Article  MathSciNet  Google Scholar 

  173. P. Walters, Equilibrium states for β-transformations and related transformations, Math. Z. 159(1918) 65–88.

    Article  MathSciNet  Google Scholar 

  174. G. Wagner, The ergodic behavior of piecewise monotonic transformations, Z. Wahrsch. 46(1919) 317–324.

    Article  Google Scholar 

  175. K. Wilkinson, Ergodic properties of certain linear mod one transformations, Adv. Math. 14(1914) 64–72.

    Article  MathSciNet  Google Scholar 

  176. M. Ważewska-Czyżewska and A. Lasota, Mathematical problems in the dynamics of the red corpuscle system, (Polish) Mat. Stos. 6(1976) 23–40.

    MathSciNet  MATH  Google Scholar 

  177. S. Wong, A central limit theorem for piecewise monotonie mappings of the unit interval, Ann. Prob. 7(1919) 500–514.

    Article  Google Scholar 

  178. S. Wong, Some metric properties of piecewise monotonie mappings of the unit interval, Trans. AMS 246(1918) 493–500.

    Article  Google Scholar 

  179. S. Wong, Hölder continuous derivatives and ergodic theory, J. London Math. Soc. (2) 22(1980) 506–520.

    Article  MathSciNet  MATH  Google Scholar 

  180. L. S. Young, A closing lemma on the interval, Invent, math. 54(1979) 179–187.

    Article  MathSciNet  MATH  Google Scholar 

  181. L. S. Young, On the prevalence of horseshoes, Trans. AMS 263(1981) 75–88.

    Article  MATH  Google Scholar 

  182. K. Yano, Topologically stable homeomorphisms of the circle, Nagoya Math. J. 79(1980) 145–149.

    MathSciNet  MATH  Google Scholar 

  183. H. Žołądek, On bifurcations of orientation reversing diffeomorphisms of the circle, Astérisque 51(1978) 473–487.

    MATH  Google Scholar 

  184. I. C. Alufohai, A class of weak Bernoulli tranfomations associated with representations of real numbers, J. London Math. Soc. (2) 23(1981) 295–302.

    Article  MathSciNet  MATH  Google Scholar 

  185. C. Bernhardt, Periodic points of a class of endomorphisms of the circle. Preprint, Carbondale, 1980.

    Google Scholar 

  186. L. Block, Periodic singularities of one pararnenter families of maps of the interval. Preprint, Gainesville, 1981.

    Google Scholar 

  187. A. Boyarsky, Continuity of measures for families of non-expanding maps. Preprint, Montreal 1981.

    Google Scholar 

  188. A. Boyarsky and N. Friedman, Irreducibility and primitivity using Markov maps, Lin. Alg. Appl. 37(1981) 103–117.

    Article  MathSciNet  MATH  Google Scholar 

  189. A. Boyarsky and G. Haddad, All invariant densities of piecewise linear Markov maps are piecewise constant. Preprint, Montreal 1981.

    Google Scholar 

  190. A. Boyarsky and H. Proppe, On the fullness of surjective maps of an interval. Preprint, Montreal 1981.

    Google Scholar 

  191. P. Collet, J. P. Eckmann, and L. Thomas, A note on the power spectrum of the iterates of Feigenbaum’s function. Preprint, Geneva, 1981.

    Google Scholar 

  192. M. Y. Cosnard, On the behavior of successive approximations, SIAM J. Num. Anal. 16(1979) 300–310.

    Article  MathSciNet  MATH  Google Scholar 

  193. M. Y. Cosnard, É tude du chaos dans l’iteration d’une transformation ponctuelle du premier ordre. Application à des modeles de biologie, C. R. Acad. Sci. Paris 286(1978) A639–A642.

    MathSciNet  Google Scholar 

  194. M. Y. Cosnard and A. Eberhard, Sur les cycles d’une application continue de la variable réele. Sem. Anal. Num. 274, USMG Lab. Math. Appl. Grenoble, 1977.

    Google Scholar 

  195. J. P. Delahaye, A counterexample concerning iteratively generated sequences, J. Math. Anal. Appl. 75(1980) 236–241.

    Article  MathSciNet  MATH  Google Scholar 

  196. —, Cycles d’ordre 2i et convergence cyclique de la methode des approximations successives. Preprint, Lille, 1980.

    Google Scholar 

  197. —, Cycles des fonctions continues et topologie de C[0,1]. Preprint, Lille, 1981.

    Google Scholar 

  198. M. Denker and M. Keane, Eine Bemerkung zur topologischen entropie, Mh. Math. 85(1978) 177–183.

    Article  MathSciNet  MATH  Google Scholar 

  199. M. Feigenbaum, Metric universality in nonlinear recurrence, Lect. Notes Phys. 93(1979) 163–166.

    Article  MathSciNet  Google Scholar 

  200. H. Fujisada and T. Yamada, Theoretical study of time correlation functions in a discrete chaotic process, Z. Naturforsch. 33a(1978) 1455–1460.

    Google Scholar 

  201. C. R. Hall, A C Denjoy counterexample. Preprint, Minneapolis, 1981.

    Google Scholar 

  202. J. Harrison, Wandering intervals. Preprint, Oxford, 1981.

    Google Scholar 

  203. —, Smoothing Denjoy diffeomorphisms. Preprint, Berkeley, 1981.

    Google Scholar 

  204. B. A. Huberman and A. B. Zisook, Power spectra of strange attractors, Phys. Rev. Lett. 46(1981) 626–628.

    Article  MathSciNet  Google Scholar 

  205. R. Ito, Rotation sets are closed, Math. Proc. Comb. Phil. Soc. 89(1981) 107–111.

    Article  MATH  Google Scholar 

  206. T. Kai and K. Tomita, Statistical mechanics of deterministic chaos-the case of one-dimensional discrete processes, Prog. Theor. Phys. 64(1980) 1531–1550.

    Article  MathSciNet  Google Scholar 

  207. R. M. May, Bifurcations and dynamic complexity in ecological systems, Ann. N.Y. Acad. Sci. 316(1979) 517–529.

    Article  Google Scholar 

  208. R. M. May and G. Oster, Period doubling and the onset of turbulence: an analytic estimate of the Feigenbaum ratio, Phys. Letters 78A(1980) 1–3.

    MathSciNet  Google Scholar 

  209. D. McDuff, C1-minimal subsets of the circle, Ann. Inst. Fourier, Grenoble 311(1981) 177–193.

    MathSciNet  Google Scholar 

  210. C. Mayer-Kress and H. Haken, Intermittent behavior of the logistic system, Phys. Letters 82A(1981) 151–155.

    MathSciNet  Google Scholar 

  211. I. Mulvey, The Birkhoff center for continuous maps of the circle. Preprint, Middletown, 1981.

    Google Scholar 

  212. Z. Nitecki, Maps of the interval with closed periodic set. Preprint, Medford, 1981.

    Google Scholar 

  213. Y. Oono, Period ≠ 2n implies chaos, Prog. Theor. Phys. 59(1978) 1028–1030.

    Article  Google Scholar 

  214. Y. Oono, A heuristic approach to the Kolmogorov entropy as a disorder parameter, Prog. Theor. Phys. 60(1918) 1944–1946.

    Article  Google Scholar 

  215. Y. Oono, T. Kohda, and H. Yamazaki, Disorder parameter for chaos, J. Phys. Soc. Japan 48(1980) 738–745.

    Article  MathSciNet  Google Scholar 

  216. W. Parry, The Lorenz attractor and a related population model, Lect. Notes Math. 729(1919) 169–187.

    Article  MathSciNet  Google Scholar 

  217. F. Rhodes, Kneading of Lorenz type for intervals and product spaces, Math. Proc. Camb. Phil. Soc. 89(1981) 167–179.

    Article  MathSciNet  MATH  Google Scholar 

  218. A. N. Šarkovskiĭ, On the reducibility of a continuous function of a real variable and the structure of the stationary points of the corresponding iterative process, (Russian) Dokl. ANSSR 139 (1961) 1067–1070 = (English) Soviet Math. Dokl. 2(1961) 1062-1064.

    Google Scholar 

  219. A. N. Šarkovskiĭ, Attracted and attracting sets. (Russian) Dokl. ANSSSR 160(1965) 1036–1038) = (English) Soviet Math. Dokl. 6(1965) 268-270.

    Google Scholar 

  220. A. N. Šarkovskiĭ, A classification of fixed points. (Ukrainian) Ukrain. Mat. Ž 17(1965) No. 5, 80-95 = (English) AMS Transl. (2) 97 (1970) 159-179.

    Google Scholar 

  221. A. N. Šarkovskiĭ, Behavior of a mapping in the neighborhood of an attracting set. (Ukrainian) Ukrain. Mat. Ž. 18(1966) No. 2, 60-83 = (English) AMS Transi. (2) 97(1970) 227-258.

    Google Scholar 

  222. A. N. Šarkovskiĭ, The partially ordered system of attracting sets. (Russian) Dokl. ANSSSR 170, 6(1966) 1276-1278 = (English) Soviet Math. Dokl. 7(1966) 1384-1386.

    Google Scholar 

  223. A. N. Šarkovskiĭ, Characterization of the cosine. (Russian) Aeq. Math. 9(1973) 121–128.

    Article  Google Scholar 

  224. S. J. Shenker and L. Kadanoff, Band to band hopping in one-dimensional maps, J. Phys. A 24(1981) L23–L26.

    Article  MathSciNet  Google Scholar 

  225. A. Shibata, T. Mayuyama, M. Mizutani, and N. Saitô, The nature of chaos in a simple dynamical system, Z. Naturforsch. 34a (1979) 1283–1289.

    Google Scholar 

  226. S. Thomae and S. Grossmann, Invariant distributions and stationary correlation functions of one-dimensional discrete processes, Z. Naturforsch. 32a(1977) 1353–1363.

    MathSciNet  Google Scholar 

  227. S. Thomae and S. Grossmann, A scaling property in critical spectra of discrete systems, Phys. Lett. 83A(1981) 181–183.

    Google Scholar 

  228. W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. Math., to appear.

    Google Scholar 

  229. S. Wong, Two probabilistic properties of weak-Bernoulli interval maps. Preprint, New York, 1981.

    Google Scholar 

  230. A. Wolf and J. Swift, Universal power spectra for the reverse bifurcation sequence, Phys. Lett. 83A(1981) 184–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nitecki, Z. (1982). Topological Dynamics on the Interval. In: Katok, A. (eds) Ergodic Theory and Dynamical Systems II. Progress in Mathematics, vol 21. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-2689-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2689-0_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3096-6

  • Online ISBN: 978-1-4899-2689-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics