Skip to main content

Recombinant DNA Techniques

  • Chapter
Saccharomyces

Part of the book series: Biotechnology Handbooks ((BTHA,volume 4))

Abstract

The aim of this chapter is to introduce the procedures currently used to isolate and manipulate yeast genes. We restrict our discussion to those procedures that are, at least in part, peculiar to the yeast Saccharomyces cerevisiae. We do not deal with procedures that are common to all other organisms, such as cDNA bank construction, hybrid-selected or arrested translation systems, nucleic acid probe strategies, or radioimmune detection strategies, as these have been covered in a variety of general texts (e.g., Maniatis et al., 1982; Glover, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beggs, J. D. 1978, Transformation of yeast by a replicating hybrid plasmid, Nature, 275: 104–109.

    Article  PubMed  CAS  Google Scholar 

  • Boeke, J. D., Lacroute, F., and Fink, G. R. 1984, A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast: 5-Fluoro-orotic acid resistance, Mol. Gen. Genet. 197: 345–346.

    Article  PubMed  CAS  Google Scholar 

  • Broach, J. R. 1982, The yeast plasmid 2 µ circle, Cell 28: 203–204.

    Article  PubMed  CAS  Google Scholar 

  • Burke, D. T., and Olson, M. V. 1986, Oligo-directed mutagenesis of E. coli and yeast by simple co-transformation of the primer and template, DNA 5: 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Burke, D. T., Carle, G. F., and Olsen, M. V. 1987, Cloning of large segments of exogenous DNA into yeast by means of artificial yeast chromosome vectors, Science 236: 806–813.

    Article  PubMed  CAS  Google Scholar 

  • Butt, T. R., Sternberg, E. J., Gorman, J. A., Clark, P., Hamer, D., Rosenberg, M., and Crooke, S. T. 1984, Copper metallothionein of yeast: Structure of the gene and regulation of expression, Proc. Natl. Acad. Sci. USA 81: 3332–3336.

    Article  PubMed  CAS  Google Scholar 

  • Cesareni, G., and Murray, J. A. H. 1987, Plasmid vectors carrying the replication origin of filamentous single-stranded phages, In: I. K. Setlow, ed., Genetic Engineering, Vol. 9, Plenum Press, New York, pp. 137–144.

    Google Scholar 

  • Clarke, L., and Carbon, J. 1976, A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome, Cell 9: 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, L., and Carbon, J. 1980, Isolation of a yeast centromere and construction of functional small circular chromosomes, Nature 257: 504–509.

    Article  Google Scholar 

  • Glover, D. M. 1985, DNA Cloning. Vol. 1/II. A Practical Approach, IRL Press, Oxford.

    Google Scholar 

  • Henderson, R. C. A., Cox, B. S., and Tubb, R. 1985, The transformation of brewing yeasts with a plasmid containing the gene for copper resistance, Curr. Genet. 9: 133–138.

    Article  CAS  Google Scholar 

  • Hinnen, A., Hicks, J. B., and Fink, G. R. 1978, Transformation of yeast, Proc. Natl. Acad. Sci. USA 75: 1929–1933.

    Article  PubMed  CAS  Google Scholar 

  • Ito, H., Fukuda, Y., Murata, K., and Kimura, A. 1983, Transformation of intact yeast cells treated with alkali cations, J. Bacteriol. 153: 163–168.

    PubMed  CAS  Google Scholar 

  • Jayaram, M., Li, Y.-Y., and Broach, J. R. 1983, The yeast plasmid 2 µ circle encodes components required for its high copy number propagation, Cell 34: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Jiminez, A., and Davies, J. 1980, Expression of a transposable antibiotic resistance element in Saccharomyces, Nature 287: 869–871.

    Article  Google Scholar 

  • Kingsman, A. J., Clarke, L., Mortimer, R. K., and Carbon, J. 1979, Replication in Saccharomyces cerevisiae of plasmid pBR313 carrying DNA from the yeast TRP1 region, Gene 7: 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J. 1982, Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Moerschell, R. P., Tsunasawa, S., and Sherman, F. 1988, Transformation of yeast with synthetic oligonucleotides, Proc. Natl. Acad. Sci. USA 85: 524–528.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer, R. K., and Schild, D. 1985, Genetic map of Saccharomyces cerevisiae, edition 9, Microbiol. Rev. 49: 181–213.

    PubMed  CAS  Google Scholar 

  • Murray, A. W, and Szostak, J. W. 1983a, Pedigree analysis of plasmid segregation in yeast, Cell 34: 961–970.

    Article  PubMed  CAS  Google Scholar 

  • Murray, A. W., and Szostak, J. W. 1983b, Construction of artificial chromosomes in yeast, Nature 305: 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth, K. 1985, At least 1400 base pairs of 5’-flanking DNA is required for the correct expression of the HO gene in yeast, Cell 42: 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth, K., and Reed, S. I. 1980, Isolation of genes by complementation in yeast: Molecular cloning of a cell-cycle gene, Proc. Natl. Acad. Sci. USA 77: 2119–2123.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth, K., and Tatchell, K. 1980, The structure of transposable yeast mating-type loci, Cell 19: 753–764.

    Article  PubMed  CAS  Google Scholar 

  • Orr-Weaver, T. L., and Szostak, W. J. 1983, Yeast recombination: The association between double-strand gap repair and crossing-over, Proc. Natl. Acad. Sci. USA 80: 4417–4421.

    Article  PubMed  CAS  Google Scholar 

  • Orr-Weaver, T. L., Szostak, J. W., and Rothstein, R. J. 1981, Yeast transformation: A model system for the study of recombination, Proc. Natl. Acad. Sci. USA 78: 6354–6358.

    Article  PubMed  CAS  Google Scholar 

  • Orr-Weaver, T. L., Szostak, J. W., and Rothstein, R. J. 1982, Genetic applications of yeast transformations with linear and gapped plasmids. In: R. Wu, L. Grossman, and K. Moldave, eds., Methods in Enzymology Vol. 101, Academic Press, New York, pp. 228–245.

    Google Scholar 

  • Parent, S. A., Fenimore, C. M., and Bostian, K. A. 1985, Vector systems for the expression, analysis and cloning of DNA sequences, S. cerevisiae, Yeast 1: 83–138.

    Article  PubMed  CAS  Google Scholar 

  • Ratzkin, B., and Carbon, J. 1977, Functional expression of cloned yeast DNA, E. coli, Proc. Natl. Acad. Sci. USA 74: 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, R. J. 1983, One-step gene disruption in yeast, In: R. Wu, L. Grossman, and K. Moldave, eds., Methods in Enzymology, Vol. 101, Academic Press, New York, pp. 202–211.

    Google Scholar 

  • Rothstein, R. J. 1985, Cloning in yeast, In: D. M. Glover, ed., DNA Cloning. Vol. II. A Practical Approach,IRL Press, Oxford, pp. 45–66.

    Google Scholar 

  • Rudolph, H., Koenig-Rauseo, I., and Hinnen, A. 1985, One-step gene replacement in yeast by cotransformation, Gene 36: 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, S., and Davis, R. W. 1979, Replacement of chromosome segments with altered DNA sequences constructed in vitro, Proc. Natl. Acad. Sci. USA 76: 4951–4955.

    Article  PubMed  CAS  Google Scholar 

  • Shortie, D., Haber, J. E., and Botstein, D. 1982, Lethal disruption of the yeast actin gene by integrative DNA transformation, Science 217: 371–373.

    Article  Google Scholar 

  • Singh, H., Bieker, J. J., and Dumas, L. B. 1982, Genetic transformation of Saccharomyces cerevisiae with single-stranded circular DNA vectors, Gene 20: 441–449.

    Article  PubMed  CAS  Google Scholar 

  • Southern, E. M. 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98: 503–517.

    Article  PubMed  CAS  Google Scholar 

  • Stiles, J. I., Szostak, J. W., Young, A. T., Wu, R., Consaul, S., and Sherman, F. 1981, DNA sequence of a mutation in the leader region of the yeast iso-l-cytochrome mRNA, Cell 25: 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Stinchcomb, D. T., Struhl, K., and Davis, R. W. 1979, Isolation and characterisation of a yeast chromosomal replicator, Nature 282: 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Struhl, K. 1983, The new yeast genetics, Nature 305: 391–396.

    Article  PubMed  CAS  Google Scholar 

  • Struhl, K„ Cameron, J. R., and Davis, R. W. 1976, Functional genetic expression of eukaryotic DNA in E. coli, Proc. Natl. Acad. Sci. USA 73: 1471–1475.

    Article  PubMed  CAS  Google Scholar 

  • Struhl, K., Stinchcomb, D. T., Scherer, S., and Davis, R. W. 1979, High frequency transformation of yeast; autonomous replication of hybrid molecules, Proc. Natl. Acad. Sci. USA 76: 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  • Walder, R. Y., and Walder, J. A. 1986, Oligodeoxynucleotide-directed mutagenesis using the yeast transformation system, Gene 42: 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, D. H. 1985, The yeast ARS element, six years on: A progress report, Yeast 1: 114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kingsman, A.J., Mellor, E.J., Dobson, M.J., Kingsman, S.M. (1991). Recombinant DNA Techniques. In: Tuite, M.F., Oliver, S.G. (eds) Saccharomyces. Biotechnology Handbooks, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2641-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2641-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2643-2

  • Online ISBN: 978-1-4899-2641-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics