Skip to main content

Methods in Classical Genetics

  • Chapter
Saccharomyces

Part of the book series: Biotechnology Handbooks ((BTHA,volume 4))

Abstract

This chapter deals with the classical genetics of Saccharomyces cerevisiae largely from the methods viewpoint. Some of the interesting areas that have been studied in this way will be mentioned, particularly in the section on cytoplasmic genetics, which is the author’s particular interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Broach, J. R., 1981, The yeast plasmid 2 p. circle, in: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 445–470.

    Google Scholar 

  • Carle, G. F., and Olson, M. V., 1985, An electrophoretic karyotype for yeast, Proc. Natl. Acad. Sci. USA 82: 3756–3760.

    Article  PubMed  CAS  Google Scholar 

  • Cech, T. R., 1983, RNA splicing: Three themes with variations, Cell 34:713–716.

    Article  PubMed  CAS  Google Scholar 

  • Conde, J., and Fink, G. R., 1976, A mutant of Saccharomyces cerevisiae defective for nuclear fusion, Proc. Natl. Acad. Sci. USA 73: 3651–3654.

    Google Scholar 

  • Culbertson, M. R., and Henry, S. A., 1973, Genetic analysis of hybrid strains trisomic for the chromosome containing a fatty acid synthetase gene complex (fall) in yeast, Genetics 75: 441–458.

    PubMed  CAS  Google Scholar 

  • DeFeo-Jones, D., Scolnick, E. M., Koller, R., and Dhar, R., 1983, ras-Related gene sequences identified and isolated from Saccharomyces cerevisiae, Nature 306: 707–709.

    Google Scholar 

  • Dujon, B., 1981, Mitochondrial genetics and functions, in: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance ( J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 505–635.

    Google Scholar 

  • Ephrussi, B., Hottinguer, H., and Tavlitzki, J., 1949, Action de l’acriflavine sur les levures. II. Etude genetique du mutant “petite colonie,” Ann. Inst. Pasteur (Paris) 76: 419.

    Google Scholar 

  • Falco, S. C., and Botstein, D., 1983, A rapid chromosome mapping method for cloned fragments of yeast DNA, Genetics 105: 857–872.

    PubMed  CAS  Google Scholar 

  • Fink, G. R., and Styles, C. A., 1972, Curing of a killer factor in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 69: 2846–2849.

    Article  PubMed  CAS  Google Scholar 

  • Fogel, S., Mortimer, R. K., and Lusnak, K., 1981, Mechanism of meiotic gene conversion or “wanderings on a foreign strand,” in: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 289–339.

    Google Scholar 

  • Gaber, R., Mathison, L., Edelman, I., and Culbertson, M. R., 1983, Frameshift suppression in Saccharomyces cerevisiae. VI. Complete genetic map of twenty-five suppressor genes, Genetics 103: 389–407.

    PubMed  CAS  Google Scholar 

  • Gallwitz, D., Donath, C., and Sander, C., 1983, A yeast gene encoding a protein homologous to the human C-has/bas protooncogene product, Nature 306: 704–707.

    Article  PubMed  CAS  Google Scholar 

  • Goldring, E. S., Grossman, L. E., Krupnick, D., Cryer, D. R., and Marmur, J., 1970, The petite mutation of yeast: Loss of mitochondrial DNA during induction of petites with ethidium bromide, J. Mol. Biol. 52: 323–335.

    Article  PubMed  CAS  Google Scholar 

  • Henry, S. A., Donahue, T., and Culbertson, M., 1975, Selection of spontaneous mutants by inositol starvation in Saccharomyces cerevisiae, Mol. Gen. Genet. 143: 5–11.

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz, I., and Oshima, Y., 1981, Control of cell type in Saccharomyces cerevisiae: Mating type and mating-type interconversion. in: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance Q. N., Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 181–209.

    Google Scholar 

  • Hilger, F., and Mortimer, R. K., 1980, Genetic mapping of argl and arg8 in Saccharomyces cerevisiae by trisomic analysis combined with interallelic complementation, J. Bacteriol. 141: 270–274.

    PubMed  CAS  Google Scholar 

  • Hilger, F., Prevot, M., and Mortimer, R. K., 1982, Genetic mapping of arg, cpa, car, and ism genes in Saccharomyces cerevisiae by trisomic analysis, Curr. Genet. 6: 93–98.

    Article  Google Scholar 

  • Kawasaki, G., 1979, Karyotypic instability and carbon source effect in cell cycle mutants of Saccharomyces cerevisiae, Ph.D. thesis, University of Washington, Seattle.

    Google Scholar 

  • Kikuchi, Y., 1983, Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance, Cell 35: 487–493.

    Article  PubMed  CAS  Google Scholar 

  • Klapholz, S., and Esposito, R. E., 1982, A new mapping method employing a meiotic recmutant of yeast, Genetics 100: 387–412.

    PubMed  CAS  Google Scholar 

  • Lindegren, G., Hwang, Y. L., Oshima, Y., and Lindegren, C. C., 1965, Genetical mutants induced by ethyl methane sulfonate in Saccharomyces, Can. J. Genet. Cytol. 7: 491–499.

    PubMed  CAS  Google Scholar 

  • Liras, P., McCusker, J., Mascioli, S., and Haber, J. E., 1978, Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis, Genetics 88: 651–671.

    PubMed  CAS  Google Scholar 

  • Livingston, D. M., 1977, Inheritance of 2 p. mDNA plasmid from Saccharomyces, Genetics 86: 73–84.

    PubMed  CAS  Google Scholar 

  • Loumaye, E., Thorner, J., and Catt, K. J., 1982, Yeast mating pheromone activates mammalian gonadotrophs: Evolutionary conservation of a reproductive hormone? Science 218: 1323–1325.

    Article  PubMed  CAS  Google Scholar 

  • Ma, C., and Mortimer, R. K., 1983, Empirical equation that can be used to determine genetic map distances from tetrad data, Mol. Cell. Biol. 3: 1886–1887.

    PubMed  CAS  Google Scholar 

  • Matsumoto, K., Uno, I., Oshima, Y., and Ishikawa, T., 1982, Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. USA 79: 2355–2359.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K., Uno, I., and Ishikawa, T., 1983a, Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase, Cell 32: 417432.

    Google Scholar 

  • Matsumoto, K., Uno, I., and Ishikawa, T., 1983b, Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase, Exp. Cell Res. 146: 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K., Uno, I., and Ishikawa, T., 1985, Genetic analysis of the role of cAMP in yeast, Yeast 1: 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer, R. K., and Hawthorne, D. C., 1973, Genetic mapping in Saccharomyces. IV. Mapping of temperature-sensitive genes and use of disomic strains in localizing genes, Genetics 74: 33–54.

    PubMed  CAS  Google Scholar 

  • Mortimer, R. K., and Manney, T. R., 1971, Mutation induction in yeast, in: Chemical Mutagens, Vol. 1 ( A. Hollaender, ed.), Plenum Press, New York, pp. 289–310.

    Chapter  Google Scholar 

  • Mortimer, R. K., and Schild, D., 1980, Genetic map of Saccharomyces cerevisiae, Microbiol. Rev. 44: 519–571.

    PubMed  CAS  Google Scholar 

  • Mortimer, R. K., and Schild, D., 1981, Genetic mapping in Saccharomyces cerevisiae, in: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance U. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 11–26.

    Google Scholar 

  • Mortimer, R. K., and Schild, D., 1985, Genetic map of Saccharomyces cerevisiae, Microbiol. Rev. 49: 519–571.

    Google Scholar 

  • Mortimer, R. K., Contopoulou, R., and Schild, D., 1981, Mitotic chromosome loss in a radiation-sensitive strain of the yeast Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 78: 5778–5782.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, D. D., 1949, Biochemical mutants in the smut fungus Ustilago maydis, Genetics 34: 607–626.

    PubMed  CAS  Google Scholar 

  • Pringle, J. R., and Hartwell, L. H., 1981, The Saccharomyces cerevisiae cell cycle, in: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance ( J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY: pp. 97–142.

    Google Scholar 

  • Riley, M. I., and Manney, T. R., 1978, Tetraploid strains of Saccharomyces cerevisiae that are trisomic for chromosome III, Genetics 89: 667–684.

    PubMed  CAS  Google Scholar 

  • Shaffer, B., Brearley, R., Littlewood, R., and Fink, G. R., 1971, A stable aneuploid of Saccharomyces cerevisiae, Genetics 67: 483–495.

    PubMed  CAS  Google Scholar 

  • Singh, A., Helms, C., and Sherman, F., 1979, Mutation of the non-Mendelian suppressor, in yeast by hypertonic media, Proc. Natl. Acad. Sci. USA 76: 1952–1956.

    Article  PubMed  CAS  Google Scholar 

  • Slonimski, P. P., Borst, P., and Attardi, G. (eds.), 1982, Mitochondrial Genes, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Snow, R., 1966, An enrichment method for auxotrophic yeast mutants using the antibiotic “nystatin,” Nature 211: 206–207.

    Article  PubMed  CAS  Google Scholar 

  • Snow, R., 1979, Maximum likelihood estimation of linkage and interference from tetrad data, Genetics 92: 231–245.

    PubMed  CAS  Google Scholar 

  • Sommer, S. S., and Wickner, R. B., 1982, Co-curing of plasmids affecting killer dsRNAs of Saccharomyces cerevisiae: [HOK], [NEX], and the abundance of L are related and further evidence that M1 requires L, J. Bacteriol. 150: 545–551.

    PubMed  CAS  Google Scholar 

  • Strathern, J. N., Jones, E. W, and Broach, J. R., eds., 1981, The Molecular Biology of the Yeast Saccharomyces, 2 vols., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Tatchell, K., Robison, L. C., and Breitenbach, M., 1985, RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation, Proc. Natl. Acad. Sci. USA 82: 3785–3789.

    CAS  Google Scholar 

  • Tipper, D. J., and Bostian, K. A., 1984, Double-stranded RNA killer systems in yeasts, Microbiol. Rev, 48: 125–156.

    PubMed  CAS  Google Scholar 

  • Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Brock, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M., 1985, In yeast, RAS proteins are controlling elements of adenylate cyclase, Cell 40: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Tuite, M. F., Mundy, C. R., and Cox, B. S., 1981, Agents that cause a high frequency of genetic changes from [psi+] to [psi—] in Saccharomyces cerevisiae, Genetics 98: 691–711.

    PubMed  CAS  Google Scholar 

  • Uno, I., Matsumoto, K., and Ishikawa, T., 1982, Characterization of cyclic AMP-requiring yeast mutants altered in the regulatory subunit of protein kinase, J. Biol. Chem. 257: 14110–14115.

    PubMed  CAS  Google Scholar 

  • Wickner, R. B., 1974, “Killer character” of Saccharomyces cerevisiae: Curing by growth at elevated temperature, J. Bacteriol. 117:1356–1357.

    Google Scholar 

  • Wickner, R. B., 1979, Mapping chromosomal genes of Saccharomyces cerevisiae using an improved genetic mapping method, Genetics 92: 803–821.

    PubMed  CAS  Google Scholar 

  • Wickner, R. B., 1983, Genetic control of replication of the double-stranded RNA segments of the killer systems in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 222: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Wickner, R. B., 1985, Killer systems in yeast, in: Current Topics in Medical Mycology; Vol. 1 (M. R. McGinnis, ed.), Springer-Verlag, New York (in press).

    Google Scholar 

  • Wickner, R. B., and Leibowitz, M. J., 1977, Dominant chromosomal mutation bypassing chromosomal genes needed for killer RNA plasmid replication in yeast, Genetics 87: 453–469.

    PubMed  CAS  Google Scholar 

  • Wickner, R. B., Boutelet, F., and Hilger, F., 1983, Evidence for a new chromosome in Saccharomyces cerevisiae, Mol. Cell. Biol. 3: 415–420.

    PubMed  CAS  Google Scholar 

  • Wood, J. S., 1982, Mitotic chromosome loss induced by methyl benzimidazole-2-yl-carbamate as a rapid mapping method in Saccharomyces cerevisiae, Mol. Cell Biol. 2: 1080–1087.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wickner, R.B. (1991). Methods in Classical Genetics. In: Tuite, M.F., Oliver, S.G. (eds) Saccharomyces. Biotechnology Handbooks, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2641-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2641-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2643-2

  • Online ISBN: 978-1-4899-2641-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics