Skip to main content

Structural Biochemistry

  • Chapter

Part of the book series: Biotechnology Handbooks ((BTHA,volume 4))

Abstract

Saccharomyces cerevisiae is a unicellular eukaryote in which a combination of biochemical, genetic, and molecular biological techniques have been used in the study of cell structure, organelle biogenesis and function, and the regulation of growth and mating. This chapter provides an overview of the biochemistry of the structural components of the yeast cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achstetter, T., and Wolf, D. H., 1985a, Hormone processing and membrane bound proteinases in yeast, EMBO J. 4: 173–177.

    PubMed  CAS  Google Scholar 

  • Achsteuer, T., and Wolf, D. H., 1985b, Proteinases, proteolysis and biological control in the yeast Saccharomyces cerevisiae, Yeast 1: 139–157.

    Google Scholar 

  • Adams, A. E. M., and Pringle, J. R., 1984, Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae, J. Cell Biol. 98: 934–945.

    PubMed  CAS  Google Scholar 

  • Ades, I., and Butow, R., 1980, The products of mitochondria-bound cytoplasmic polysomes in yeast, J. Biol. Chem. 255: 9918–9924.

    PubMed  CAS  Google Scholar 

  • Andregg, R. J., Beta, R., Carr, S. A., Crabb, J. W., and Dontze, W., 1988, Structure of Saccharomyces cerevisiae mating hormone a-factor, J. Biol. Chem. 263: 1823618240.

    Google Scholar 

  • Appleby, C. A., and Morton, R. K., 1959, Lactic dehydrogenase and cytochrome b2 of baker’s yeast, Biochem. J. 71: 492–499.

    PubMed  CAS  Google Scholar 

  • Ares, M., 1986, U2 RNA from yeast is unexspectedly large and contains homology to vertebrate U4, U5, and U6 small nuclear RNAs, Cell 47: 49–59.

    PubMed  CAS  Google Scholar 

  • Babayan, T. L., and Bezrukov, M. G., 1985, Autolysis in yeast, Acta Biotechnol. 5: 129–136.

    CAS  Google Scholar 

  • Baldwin, W. W., and Kubitschek, H. E., 1984, Bouyant density variation during the cell cycle of Saccharomyces cerevisiae, J. Bacteriol. 158: 701–704.

    PubMed  CAS  Google Scholar 

  • Ballou, C. E., 1982, Yeast cell wall and cell surface, in: The Molecular Biology of the Yeast Saccharomyces, Metabolism and Gene Expression (J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 335–360.

    Google Scholar 

  • Ballou, C. E., Maitra, S. K., Walter, J. W., and Whelan, W. L., 1977, Developmental defects associated with glucosamine auxotrophie in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 74: 4351–4355.

    PubMed  CAS  Google Scholar 

  • Bandlow, W., 1972, Membrane separation and biogenesis of the outer membrane of yeast mitochondria, Biochim. Biophys. Acta 282: 105–122.

    PubMed  CAS  Google Scholar 

  • Baralle, F. E., 1983, The functional significance of leader and trailer sequences in eucaryotic mRNAs, Int. Rev. Cytol. 81: 71–106.

    PubMed  CAS  Google Scholar 

  • Becker, G. W., and Lester, R. L., 1980, Biosynthesis of phospoinositol-containing sphingolipids from phosphatidylinositol by a membrane preparation from Saccharomyces cerevisiae, J. Bacteriol. 142: 747–754.

    PubMed  CAS  Google Scholar 

  • Betz, R., MacKay, V. L., and Duntze, W., 1977, a-Factor from S. cerevisiae: Partial characterization of a mating hormone produced by cells of mating type a, J. Bacteriol. 132: 462–472.

    Google Scholar 

  • Betz, R., Manney, T. R., and Duntze, W., 1981, Hormonal control of gametogenesis in the yeast Saccharomyces cerevisiae, Gamete Res. 4: 571–584.

    CAS  Google Scholar 

  • Black, S., 1985, Inhibition of the reductive activation of valyl-tRNA synthetase from yeast by unsaturated fatty acids and associated observations on newly found lipophilic substances from yeast, J. Biol. Chem. 260: 433–439.

    CAS  Google Scholar 

  • Boller, T., Dürr, M., and Wiemken, A., 1976, Asymmetric distribution of concanavalin A binding sites on yeast plasmalemma and vacuolar membrane, Arch. Microbiol. 109: 115118.

    Google Scholar 

  • Borst-Pauwels, G. W. F. H., and Peters, P. H. J., 1981, Factors affecting the inhibition of yeast plasma membrane ATPase by vanadate, Biochim. Biophys. Acta 642: 173–181.

    PubMed  CAS  Google Scholar 

  • Bottema, C. K., and Parks, L. W., 1980, Sterol analysis of the inner and outer mitochondrial membranes in yeast, Lipids 15: 987–992.

    CAS  Google Scholar 

  • Brake, A., Brenner, C., Najarian, R., Laybourn, P., and Merryweather, J., 1985, Structure of genes encoding precursors of the yeast peptide mating pheromone a-factor, in: Transport and Secretion of proteins ( M. J. Gething, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 103–108.

    Google Scholar 

  • Brewer, B. J., and Fangman, W. L., 1980, Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores, Proc. Natl. Acad. Sci. USA 77: 5380–5384.

    PubMed  CAS  Google Scholar 

  • Brody, E., and Abelson, J., 1985, The “spliceosome”: Yeast premessenger RNA associates with a 40S complex in a splicing dependent reaction, Science 228: 963–967.

    PubMed  CAS  Google Scholar 

  • Bucking-Throm, E., Duntze, W., Hartwell, L. H., and Manney, T. R., 1973, Reversible arrest of haploid yeast cells at the initiation of DNA synthesis by a diffusible sex factor, Exp. Cell Res. 76: 99–110.

    PubMed  CAS  Google Scholar 

  • Byers, B., 1981, Cytology of the yeast life cycle, in: The Molecular Biology of the Yeast Saccharomyces, Life Cycle and Inheritance (J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 59–97.

    Google Scholar 

  • Byers, B., and Goetsch, L., 1975a, Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 72: 5056–5060.

    PubMed  CAS  Google Scholar 

  • Byers, B., and Goetsch, L., 1975b, Behaviour of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae, J. Bacteriol. 124: 511–523.

    PubMed  CAS  Google Scholar 

  • Byers, B., and Goetsch, L., 1976, A highly ordered ring of membrane-associated filaments in budding yeast, J. Cell Biol. 69: 717–721.

    PubMed  CAS  Google Scholar 

  • Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B., 1982, Glycoprotein synthesis in yeast: Identification of Man8GlcNAc2 as an essential intermediate in oligosaccharide processing, J. Biol. Chem. 257: 14657–14666.

    PubMed  CAS  Google Scholar 

  • Cabib, E., Roberts, R., and Bowers, B., 1982, Synthesis of the yeast cell wall and its regulation, Annu. Rev. Biochem. 51: 763–793.

    CAS  Google Scholar 

  • Cabib, E., Kang, M. S., Bowers, B., Elango, N., Mattia, E., Slater, M. L., and Au-Young, J., 1984, Chitin synthesis in yeast, a vectorial process in the plasma membrane, FEMS Symp. 27: 91–100.

    CAS  Google Scholar 

  • Calderbank, J., Keenan, M. H. J., and Rose, A. H., 1985, Plasma-membrane phospholipid unsaturation affects expression of the general amino-acid permease in Saccharomyces cerevisiae Y185, J. Gen. Microbiol. 131: 57–65.

    CAS  Google Scholar 

  • Carlson, M., and Botstein, D., 1982, Two differentially regulated mRNAs with different 5’ ends encode secreted and intracellular forms of yeast invertase, Cell 28: 145–154.

    PubMed  CAS  Google Scholar 

  • Carlson, M., Taussig, R., Kustu, S., and Botstein, D., 1983, The secreted form of invertase in Saccharomyces cerevisiae is synthesized from mRNA encoding a signal sequence, Mol. Cell. Biol. 3: 439–447.

    PubMed  CAS  Google Scholar 

  • Castellanos, R. M. P., and Mazon, M. J., 1985, Identification of phosphotyrosine in yeast proteins and of a protein tyrosine kinase associated with the plasma membrane, J. Biol. Chem. 260: 8240–8242.

    PubMed  CAS  Google Scholar 

  • Catley, B. J., 1983, Regulation of yeast and fungal polysaccharides excluding chitin and cellulose, Prog. Indust. Microbiol. 18: 129–200.

    CAS  Google Scholar 

  • Cech, T. R., 1983, RNA splicing: Three themes with variations, Cell 34: 713–716.

    PubMed  CAS  Google Scholar 

  • Chia, L.-L., and McLaughlin, C., 1979, The half-life of mRNA in Saccharomyces cerevisiae, Mol. Gen. Genet. 170: 137–144.

    PubMed  CAS  Google Scholar 

  • Chu, F. K., Takase, K., Guarino, D., and Maley, F., 1985, Diverse properties of external and internal forms of yeast invertase derived from the same gene, Biochemistry 24: 6125–6132.

    PubMed  CAS  Google Scholar 

  • Chvatchko, Y., Howald, I., and Riezman, H., 1986, Two yeast mutants defective in endocytosis are defective in pheromone response, Cell 46: 355–364.

    PubMed  CAS  Google Scholar 

  • Clausen, M. K., Christiansen, K., Jensen, P. K., and Behnke, O., 1974, Isolation of lipid particles from baker’s yeast, FEBS Lett. 43: 176–179.

    PubMed  CAS  Google Scholar 

  • Clayton, L., Pogson, C. I., and Gull, K., 1979, Microtubule proteins in yeast Saccharomyces cerevisiae, FEBS Lett. 106: 67–70.

    PubMed  CAS  Google Scholar 

  • Cleveland, D. W., Lopata, M. A., MacDonald, R. J., Cowan, N. J., Rutter, W. J., and Kirschner, M. W., 1980, Number and evolutionary conservation of alpha-and betatubulin and cytoplasmic beta-and gamma-actin genes using specific cloned cDNA probes, Cell 20: 95–105.

    PubMed  CAS  Google Scholar 

  • Daum, G., Böhni, P. C., and Schatz, G., 1982, Import of proteins into mitochondria: Cytochrome b and cyrochrome c peroxidase are located in the intermembrane space of yeast mitochondria, J. Biol. Chem. 257: 13028–13033.

    PubMed  CAS  Google Scholar 

  • Del Rey, F., Santos, T., Garcia-Acha, I., and Nombela, C., 1979, Synthesis of 1,3-ßglucanases in Saccharomyces cerevisiae during the mitotic cycle, mating and sporulation, J. Bateriol. 139: 924–931.

    Google Scholar 

  • Djavadi-Ohaniance, L., Rudin, Y., and Schatz, G., 1978, Identification of enzymatically inactive apocytochrome c peroxidase in aerobically grown Saccharomyces cerevisiae, J. Biol. Chem. 253: 4402–4407.

    PubMed  CAS  Google Scholar 

  • Domdey, H., Apostol, B., Lin, R.-J., Newmann, A., Brody, E., and Abelson, J., 1984, Lariat structures are in vivo intermediates in yeast pre mRNA splicing, Cell 39: 611–621.

    PubMed  CAS  Google Scholar 

  • Douglas, M., and Takeda, M., 1985, Nuclear genes encoding mitochondrial proteins in yeast, Trends Biochem. Sci. 10: 192–194.

    CAS  Google Scholar 

  • Dow, J. M., Carron, R. R., and Villa, V. D., 1981, Role of membranes of mycelia] Mucor rouxii in synthesis and secretion of cell wall matrix polymers, J Bacteriol. 145: 272–279.

    CAS  Google Scholar 

  • Duffus, J. H., Levi, C., and Manners, D. J., 1982, Yeast cell-wall glucans, Adv. Microb. Physiol. 23: 151–181.

    PubMed  CAS  Google Scholar 

  • Dujon, B., 1981, Mitochondrial genetics and functions, in: The Molecular Biology of the Yeast Saccharomyces, Life Cycle and Inheritance ( J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 505–634.

    Google Scholar 

  • Duntze, W., MacKay, V., and Manney, T. R., 1970, Saccharomyces cerevisiae: A diffusible sex factor, Science 168: 1472–1473.

    CAS  Google Scholar 

  • Duntze, W., Stötzler, D., Bücking-Throm, E., and Kalbitzer, S., 1973, Purification and partial characterization of alpha-factor, a mating-type specific inhibitor of cell reproduction from Saccharomyces cerevisiae, Eur. J. Biochem. 35: 357–365.

    PubMed  CAS  Google Scholar 

  • Duran, A., and Cabib, E., 1978, Solubilization and partial purification of yeast chitin synthase: Confirmation of the zymogenic nature of the enzyme, J. Biol. Chem. 253: 4419–4425.

    PubMed  CAS  Google Scholar 

  • Dürr, M., Urech, K., Boller, T., Wiemken, A., Schwencke, J., and Nagy, M., 1979, Sequestration of arginine by polyphosphate in vacuoles of yeast (Saccharomyces cerevisiae), Arch. Microbiol. 121: 169–175.

    Google Scholar 

  • Elliott, S. G., and McLaughlin, C. S., 1983, The yeast cell cycle: Coordination of growth and division rates, Prog. Nucl. Acid Res. Mol. Biol. 28: 143–176.

    CAS  Google Scholar 

  • Erdmann, V. A., Wolters, J., Huysmans, E., and DeWachter, R., 1985, Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences, Nucl. Acids Res. 13 (Suppl.):r105r153.

    Google Scholar 

  • Esmon, B., Novick, P., and Schekman, R., 1981, Compartmentalized assembly of oligosaccharides on exported glycoproteins in yeast, Cell 25: 451–460.

    PubMed  CAS  Google Scholar 

  • Esposito, R. E., and Klapholz, S., 1981, Meiosis and Ascospore development, in: The Molecular Biology of the Yeast Saccharomyces, Life Cycle and Inheritance U. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 211–287.

    Google Scholar 

  • Faye, G., and Sor, F., 1977, Analysis of mitochondrial ribosomal proteins of Saccharomyces cerevisiae by two dimensional polyacrylamide gel electrophoresis, Mol. Gen. Genet. 155: 27–35.

    PubMed  CAS  Google Scholar 

  • Ferro-Novick, S., 1985, Genetic approaches to the study of protein targeting across a lipid bilayer, Trends Biochem. Sci. 10: 425–427.

    CAS  Google Scholar 

  • Ferro-Novick, S., Novick, P., Field, C., and Schekman, R., 1984, Yeast secretory mutants that block the formation of active cell surface enzymes, J. Cell Biol. 98: 35–43.

    PubMed  CAS  Google Scholar 

  • Filipowicz, W., and Gross, H. J., 1984, RNA ligation in eukaryotes, Trends Biochem. Sci. 9: 68–71.

    CAS  Google Scholar 

  • Fleet, G. H., 1984, The occurrence and function of endogenous wall-degrading enzymes in yeasts, FEMS Symp. 27: 227–238.

    CAS  Google Scholar 

  • Freeman, R. F., and Peberby, J. F., 1983, Protoplast fusion in yeasts, in: Yeast genetics. Fundamental and applied aspects ( J. F. T. Spencer, D. M. Spencer, and A. R. W. Smith, eds.), Springer, New York, pp. 243–253.

    Google Scholar 

  • Frevert, J., and Ballou, C. E., 1982, Yeast invertase polymorphism is correlated with variable states of oligosaccharide chain phosphorylation, Proc. Natl. Acad. Sci. USA 79: 6147–6150.

    PubMed  CAS  Google Scholar 

  • Frevert, J., and Ballou, C. E., 1985, Saccharomyces cerevisiae structural cell wall mannoprotein, Biochemistry 24: 753–759.

    CAS  Google Scholar 

  • Gallwitz, D., and Sures, R., 1980, Structure of a split gene: Complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 77: 2546–2550.

    PubMed  CAS  Google Scholar 

  • Georgiev, O. I., Nikolaev, N., Hadjiolov, A. A., Skryabin, K. G., Zakharyev, V. M., and Bayev, A. A., 1981, The structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25S rRNA gene from Saccharomyces cerevisiae, Nucl. Acids Res. 9: 6953–6973.

    PubMed  CAS  Google Scholar 

  • Goffeau, A., and Slayman, C. W, 1981, The proton-translocating ATPase of the fungal plasma membrane, Biochim. Biophys. Acta 639: 197–223.

    PubMed  CAS  Google Scholar 

  • Goldstein, A., and Lampen, J. O., 1975, ß-D-Fructofuranoside fructohydrolase from yeast, Meth. Enzymol. 42: 504–511.

    PubMed  CAS  Google Scholar 

  • Gordon, C. N., and Elliott, S. G., 1977, Fractionation of Saccharomyces cerevisiae cell populations by centrifugal elutration, J. Bacteriol. 129: 97–100.

    PubMed  CAS  Google Scholar 

  • Gorenstein, C., and Warner, J. R., 1976, Coordinate regulation of the synthesis of eukaryotic ribosomal proteins, Proc. Natl. Acad. Sci. USA 73: 1547–1551.

    PubMed  CAS  Google Scholar 

  • Gourse, R. L., Sharrock, R. A., and Nomura, M., 1986, Control of ribosome synthesis in Escherichia coli, in: Structure, Function and Genetics of Ribosomes ( B. Hardesty and G. Kramer, eds.), Springer-Verlag, New York, pp. 766–788.

    Google Scholar 

  • Greer, C., and Schekman, R., 1982a, Actin from Saccharomyces cerevisiae, Mol. Cell. Biol. 2: 1270–1278.

    PubMed  CAS  Google Scholar 

  • Greer, C., and Schekman, R., 1982b, Calcium control of Saccharomyces cerevisiae actin assembly, Mol. Cell. Biol. 2: 1279–1286.

    PubMed  CAS  Google Scholar 

  • Greer, C. L., Peebles, C. L., Gegenheimer, P., and Abelson, J., 1983, Mechanism of action of a yeast RNA ligase in tRNA splicing, Cell 32: 537–546.

    PubMed  CAS  Google Scholar 

  • Guerin, B., Labbe, P., and Somlo, M., 1979, Preparation of yeast mitochondria (Saccharomyces cerevisiae) with good P/O and respiratory control ratios, Meth. Enzymol. 55: 149–159.

    PubMed  CAS  Google Scholar 

  • Guillen, A., Leal, F., Andaluz, E., and Larriba, G., 1985, Endogenous factors that modula.e yeast glucan synthetase in cell-free extracts, Biochim. Biophys. Acta 842: 151–161.

    PubMed  CAS  Google Scholar 

  • Guiso, N., Dreyfus, M., Siffert, O., Danchin, A., Spyridakis, A., Gargouri, A., Claisse, M., and Slonimski, P. P., 1984, Antibodies against synthetic oligopeptides allow identification of the mRNA-maturase encoded by the second intron of the yeast cob—box gene, EMBO J. 3: 1769–1772.

    PubMed  CAS  Google Scholar 

  • Guth, E., Hasimoto, T., and Conti, S. F., 1972, Morphogenesis of ascospores in Saccharomyces cerevisiae, J. Bacteriol. 109: 869–880.

    PubMed  CAS  Google Scholar 

  • Guthrie, C., 1986, Finding functions for small nuclear RNAs in yeast, Trends Biochem. Sci. 11: 430–434.

    CAS  Google Scholar 

  • Guthrie, C., and Abelson, J., 1982, Organization of tRNA genes in Saccharomyces cerevisiae, in: The Molecular Biology of the Yeast Saccharomyces, Metabolism and Gene Expression Q. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 487–528.

    Google Scholar 

  • Haber, J. E., and Halvorson, H. O., 1975, Methods in sporulation and germination of yeasts, in: Methods in Cell Biology Vol. 11 ( D. M. Prescott, ed.), Academic Press, New York, pp. 46–69.

    Google Scholar 

  • Hadjiolov, A. A., 1985, The Nucleolus and Ribosome Biogenesis, Springer-Verlag, Vienna, New York, pp. 1–263.

    Google Scholar 

  • Hagen, D. C., McCaffrey, G., and Sprague, G. F., 1986, Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a-factor: Gene sequence and implications for the structure of the presumed receptor, Proc. Natl. Acad. Sci. USA 83: 1418–1422.

    PubMed  CAS  Google Scholar 

  • Haguenauer-Tsapis, R., and Hinnen, A., 1984, A deletion that induces the signal peptidase cleavage site impairs processing, glycosylation, and secretion of cell surface yeast acid phosphatase, Mol. Cell. Biol. 4: 2668–2675.

    PubMed  CAS  Google Scholar 

  • Hanson, B. A., and Lester, R. L., 1980, The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa, J. Lipid Res. 21: 309–315.

    PubMed  CAS  Google Scholar 

  • Haselbeck, A., and Schekman, R., 1986, Interorganelle transfer and glycosylation of yeast invertase in vitro, Proc. Natl. Acad. Sci. USA 83: 2017–2021.

    PubMed  CAS  Google Scholar 

  • Hashimoto, C., Cohen, R. E., Zhang, W. -J., and Ballou, C. E., 1981, Glycoprotein chains on yeast carboxypeptidase Y are phosphorylated, Proc. Natl. Acad. Sci. USA 78: 2244–2248.

    PubMed  CAS  Google Scholar 

  • Hasilik, A., and Tanner, W., 1978, Carbohydrate moiety of carboxypeptidase Y and perturbation of its biosynthesis, Eur. J. Biochem. 91: 567–575.

    PubMed  CAS  Google Scholar 

  • Hay, R., Böhni, P., and Gasser, S., 1984, How mitochondria import proteins, Biochim. Biophys. Acta 779: 65–87.

    PubMed  CAS  Google Scholar 

  • Henry, S. A., 1982, Membrane lipids of yeast: Biochemical and genetic studies, in: The Molecular Biology of the Yeast Saccharomyces, Metabolism and Gene Expression ( J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 101–158.

    Google Scholar 

  • Henry, S. A., Klig, L. S., and Loewy, B. S., 1984, The genetic regulation and coordination of biosynthetic pathways in yeast: Amino acid and phospholipid synthesis, Annu. Rev. Genet. 18: 207–31.

    PubMed  CAS  Google Scholar 

  • Huet, J., Cottrelle, P., Cool, M., Vignais, M.-L., Thiele, D., Marck, C., Buhler, J. M., Sentenac, A., and Fromageot, P., 1985, A general upstream binding factor for genes of the yeast translational apparatus, EMBO J. 4: 3539–3547.

    PubMed  CAS  Google Scholar 

  • Ide, G. J., 1981, Nucleoside 5’,-[7-Sjtriphosphates will initiate transcription in isolated yeast nuclei, Biochemistry 20: 2633–2638.

    PubMed  CAS  Google Scholar 

  • Itoh, T., Higo, K., and Otaka, E., 1979, Isolation and characterization of twenty-three ribosomal proteins from large subunits of yeast, Biochemistry 18: 5787–5793.

    PubMed  CAS  Google Scholar 

  • Jacq, C., Banroques, J., Becam, A. M., Slonimski, P. P. Guiso, N., and Danchin, A., 1984, Antibodies against a fused “lacZ-yeast mitochondrial intron” gene product allow identification of the mRNA maturase encoded by the fourth intron of the yeast cob-box gene, EMBO J. 3: 1567–1572.

    Google Scholar 

  • Jenness, D. D., and Spatrick, P., 1986, Down regulation of the alpha-factor peromone in Saccharomyces cerevisiae, Cell 46: 345–353.

    CAS  Google Scholar 

  • Jenness, D., Burkholder, A. C., and Hartwell, H., 1983, Binding of alpha-factor pheromone to yeast a-cells: Chemical and genetic evidence for an alpha-factor receptor, Cell 35: 521–529.

    PubMed  CAS  Google Scholar 

  • Jenness, D. D., Burkholder, A. C., and Hartwell, L. H., 1986, Binding of alpha-factor pheromone to Saccharomyces cerevisiae a-cells: Dissociation constant and number of binding sites, Mol. Cell. Biol. 6: 318–320.

    PubMed  CAS  Google Scholar 

  • Jerome, J. F., and Jaehning, J. A., 1986, mRNA transcription in nuclei isolated from Saccharomyces cerevisiae, Mol. Cell. Biol. 6: 1633–1639.

    Google Scholar 

  • Julius, D., Blair, L., Brake, A., Sprague, G., and Thorner, J., 1983, Yeast alpha factor is processed from a large precursor polypepide: The essential role of a membrane-bound dipeptidyl aminopeptidase, Cell 32: 839–852.

    PubMed  CAS  Google Scholar 

  • Julius, D., Schekman, R., and Thorner, J., 1984, Glycosylation and processing of preproalpha-factor through the yeast secretory pathway, Cell 36: 309–318.

    PubMed  CAS  Google Scholar 

  • Kaibuchi, K., Miyajima, A., Arai, K.-I., and Matsumoto, K., 1986, Possible involvement of RAS-encoded proteins in glucose-induced inositolphospholipid turnover in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 83: 8172–8176.

    PubMed  CAS  Google Scholar 

  • Kakinuma, Y., Ohsumi, Y., and Anraku, Y., 1981, Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of Saccharomyces cerevisiae, J. Biol. Chem. 256: 10859–10863.

    PubMed  CAS  Google Scholar 

  • Kaneko, H., Hosohara, M., Tanaka, M., and Itoh, T., 1976, Lipid composition of 30 species of yeast, Lipids 11: 837–844.

    PubMed  CAS  Google Scholar 

  • Kang, M. S., Elago, N., Mattia, E., Au-Young, J., Robbins, P. W., and Cabib, E., 1984, Isolation of chitin synthase from Saccharomyces cerevisiae, purification of an enzyme by entrapment in the reaction product, J. Biol. Chem. 259: 14966–14972.

    PubMed  CAS  Google Scholar 

  • Käppeli, O., Sauer, M., and Fiechter, A., 1982, Convenient procedure for the isolation of highly enriched cytochrome P-450—containing microsomal fraction from Candida tropicalis, Anal. Biochem. 126: 179–182.

    PubMed  Google Scholar 

  • Kato, N., Sahm, H., Schuette, H., and Wagner, F., 1979, Purification and properties of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from a methanol-utilizing yeast, Candida boidinii, Biochem. Biophys. Acta 566: 1–11.

    PubMed  CAS  Google Scholar 

  • Kilmartin, J. V., 1981, Purification of yeast tubulin by self-assembly in vitro, Biochemistry 20: 3629–3633.

    PubMed  CAS  Google Scholar 

  • Kilmartin, J. V., and Adams, A. E. M., 1984, Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces, J. Cell Biol. 98: 922–933.

    PubMed  CAS  Google Scholar 

  • King, S. M., and Hyams, J. S., 1982, The mitotic spindle of Saccharomyces cerevisiae: Assembly, structure, and function, Micron 13: 93–117.

    Google Scholar 

  • King, S. M., Hyams, J. S., and Luba, A., 1982, Absence of microtubule sliding and an analysis of spindle formation from the yeast Saccharomyces cerevisiae, J. Cell. Biol. 94: 341–349.

    PubMed  CAS  Google Scholar 

  • Klig, L. S., Homann, M. J., Carman, G. M., and Henry, S. A., 1985, Coordinate regulation of phospholipid biosynthesis in Saccharomyces cerevisiae: Pleiotropically constitutive opil mutant, J. Bacteriol. 162: 1135–1141.

    PubMed  CAS  Google Scholar 

  • Koch, H., and Friesen, J. D., 1979, Individual messenger RNA half lives in Saccharomyces cerevisiae, Mol. Gen. Genet. 170: 129–135.

    PubMed  CAS  Google Scholar 

  • Kramer, R., Kopp, F., Niedermeyer, W., and Fuhrmann, G. F., 1978, Comparative studies of the structure and composition of the plasmalemma and the tonoplast in Saccharomyces cerevisiae, Biochim. Biophys. Acta 507: 369–380.

    CAS  Google Scholar 

  • Kruiswijk, T., Planta, R. J., and Mager, W. H., 1978, Quantitative analysis of the protein composition of yeast ribosomes, Eur. J. Biochem. 83: 245–252.

    PubMed  CAS  Google Scholar 

  • Kurjan, J., and Herskowitz, I., 1982, Structure of a yeast pheromone gene (MFalpha): A putative alpha-factor precursor contains four tandem copies of mature alpha-factor, Cell 30: 933–943.

    PubMed  CAS  Google Scholar 

  • Langford, C. J., and Gallwitz, D., 1983, Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts, Cell 33: 519–527

    PubMed  CAS  Google Scholar 

  • Larkin, J. C., and Woolford, J. L., 1983, Molecular cloning and analysis of the CRY1 gene: A yeast ribosomal protein gene, Nucl. Acids Res. 11: 403–420.

    PubMed  CAS  Google Scholar 

  • Leer, R. J., van Raamsdonk-Duin, M. C., Molenaar, M. T, Cohen, L. H., Mager, W., and Planta, R. J., 1982, The structure of the gene coding for the phosphorylated ribosomal protein S 10 in yeast, Nucl. Acids Res. 10: 5869–5878.

    PubMed  CAS  Google Scholar 

  • Leer, R. J., van Raamsdonk-Duin, M. C., Hagendoorn, J. M., Mager, W. H., and Planta, R. J., 1984, Structural comparison of yeast ribosomal protein genes, Nucl. Acids Res. 12: 6685–6700.

    PubMed  CAS  Google Scholar 

  • Leer, R. J., van Raamsdonk-Duin, M. C., Kraakman, P., Mager, W. H., and Planta, R. J., 1985a, The genes of yeast ribosomal proteins S24 and L46 are adjacent and divergently transcribed, Nucl. Acids Res. 13: 701–709.

    PubMed  CAS  Google Scholar 

  • Leer, R. J., Van Ramsdonk-Duin, M. M. C., Mager, W. H., and Planta, R. J., 1985b, Conserved sequences upstream of yeast ribosomal protein genes, Curr. Gen. 9: 273–277.

    CAS  Google Scholar 

  • Lehle, L., and Tanner, W., 1978, Glycosyltransfer from dolichylphosphate sugars to endogenous and exogenous glycoprotein acceptors in yeast, Eur. J. Biochem. 83: 563–570.

    PubMed  CAS  Google Scholar 

  • Letts, V. A., and Dawes, I. W., 1983, Temperature-sensitive Saccharomyces cerevisiae mutant defective in lipid biosynthesis, J. Bacteriol. 156: 212–221.

    PubMed  CAS  Google Scholar 

  • Letts, V. A., and Henry, S. A., 1985, Regulation of phospholipid synthesis in phosphatidyl serine synthase-deficient (chol) mutants of Saccharomyces cerevisiae, J. Bacteriol. 163: 560–567.

    PubMed  CAS  Google Scholar 

  • Liao, H., and Thorner, J., 1980, Yeast mating pheromone alpha-factor inhibits adenylate cyclase, Proc. Natl. Acad. Sci. USA 77: 1898–1902.

    PubMed  CAS  Google Scholar 

  • Lipke, P. N., Taylor, A., and Ballou, C. E., 1976, Morphogenic effects of a-factor on Saccharomyces cerevisiae a cells, J. Bacteriol. 127: 610–618.

    PubMed  CAS  Google Scholar 

  • Low, C., Rodriguez, R. J., and Parks, L. W., 1985, Modulation of yeast plasma membrane composition of a yeast sterol auxotroph as a function of exogenous sterol, Arch. Biochem. Biophys 240: 530–538.

    PubMed  CAS  Google Scholar 

  • Makarow, M., 1985a, Endocytosis in Saccharomyces cerevisiae: Internalization of enveloped virus into sheroplasts, EMBO J. 4: 1855–1860.

    PubMed  CAS  Google Scholar 

  • Makarow, M., 1985b, Endocytosis in Saccharomyces cerevisiae: Internalization of a-amylase and fluorescent dextran into cells, EMBO J. 4: 1861–1866.

    PubMed  CAS  Google Scholar 

  • Makarow, M., and Nevalainen, T., 1987, Transport of a fluorescent macromolecule via endosomes to a vacuole in Saccharomyces cerevisiae, J. Cell Biol. 104: 67–75.

    PubMed  CAS  Google Scholar 

  • Malpartida, F., and Serrano, R., 1981a, Reconstitution of the proton-translocating adenosine triphosphatase of yeast plasma membranes, J. Biol. Chem. 256: 4157–4177.

    Google Scholar 

  • Malpartida, F., and Serrano, R., 198 lb, Phosphorylated intermediate of the ATPase from the plasma membrane of yeast. Eur. J. Biochem. 116: 413–417.

    Google Scholar 

  • Mann, W., and Jeffery, J., 1986, Yeasts in molecular biology. Spheroplast preparation with Candida utilis, Schizosaccharomyces pombe and Saccharomyces cerevisiae, Biosci. Rep. 6: 597–602.

    PubMed  CAS  Google Scholar 

  • Mann, K., and Mecke, D., 1982, The isolation of Saccharomyces cerevisiae nuclear membranes with nuclease and high-salt treatment, Biochim. Biophys. Acta 687: 57–62.

    PubMed  CAS  Google Scholar 

  • Martinez, J. P., Murqui, A., Flores, A., and Sentandreu, R., 1984, Subcellular fractionation of actively growing protoplasts of Saccharomyces cerevisiae, Biochim. Biophys. Acta 805: 59–71.

    PubMed  CAS  Google Scholar 

  • Mason, T. L., Poyton, R. O., Wharton, D. C., and Schatz, B., 1973, Cytochrome c oxidase from baker’s yeast. I. Isolation and properties, J. Biol. Chem. 248: 1346–1354.

    PubMed  CAS  Google Scholar 

  • Matile, P., 1978, Biochemistry and function of vacuoles, Annu. Rev. Plant Physiol. 29: 193–223.

    CAS  Google Scholar 

  • Matile, P., and Wiemken, A., 1976, Interaction between cytoplasm and vacuole, in: Transport in Plants, Vol. 3 ( C. R. Stocking and U. Heber, eds.), Springer, Berlin, pp. 255–287.

    Google Scholar 

  • Mattaj, I. W., 1984, SnRNAs: From gene architecture to RNA processing, Trends Biochem. Sci. 9: 435–437.

    CAS  Google Scholar 

  • McDonough, J. P., and Mahler, H. P., 1982, Covalent phosphorylation of the Mgt+- dependent ATPase of yeast plasma membrane, J. Biol. Chem. 257: 14579–14581.

    PubMed  CAS  Google Scholar 

  • McKee, E. E., McEwen, J. E., and Poyton, R. O., 1984, Mitochondrial gene expression in Saccharomyces cerevisiae. II. Fidelity of translation in isolated mitochondria from wild type and respiratory-deficient mutant cells, J. Biol. Chem. 259: 9332–9338.

    PubMed  CAS  Google Scholar 

  • Mechler, B., Müller, M., Müller, H., Meussdoerffer, F., and Wolf, D. H., 1982, In vivo biosynthesis of the vacuolar proteinases A and B in the yeast Saccharomyces cerevisiae, J. Biol. Chem. 257: 11203–11206.

    CAS  Google Scholar 

  • Meyer, D. I., 1982, The signal hypothesis—A working model, Trends Biochem. Sci. 7: 320321.

    Google Scholar 

  • Miller, A. M., 1984, The yeast Mataf gene contains two introns, EMBO J. 3: 1061–1065.

    PubMed  CAS  Google Scholar 

  • Mitchison, J. M., and Carter, B. L. A., 1975, Cell cycle analysis, in: Methods in Cell Biolog,, Vol. 11 ( D. M. Prescott, ed.), Academic Press, New York, pp. 201–219.

    Google Scholar 

  • Moeller, C. H., Mudd, J. B., and Thomson, W. W., 1981, Lipid phase separations and intramembranous particle movements in the yeast tonoplast, Biochim. Biophys. Acta 643: 376–386.

    PubMed  CAS  Google Scholar 

  • Moens, P. B., and Rapport, E., 1971, Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen), J. Cell Biol. 50: 344–361.

    PubMed  CAS  Google Scholar 

  • Mueller, S. C., and Branton, D., 1984, Identification of coated vesicles in Saccharomyces cerevisiae, J. Cell Biol. 98: 341–346.

    PubMed  CAS  Google Scholar 

  • Nagy, M., Laporte, J., Penverne, B., and Herne, G., 1982, Nuclear localization of aspartate transcarbamoylase in Saccharomyces cerevisiae, J. Cell Biol. 92: 790–794.

    PubMed  CAS  Google Scholar 

  • Nakajima, T., and Ballou, C. E., 1975, Yeast manno-protein biosynthesis: Solubilization and selective assay of four mannosyltransferases, Proc. Natl. Acad. Sci. USA 72: 3912–3916.

    PubMed  CAS  Google Scholar 

  • Nakayama, N., Miyajima, A., and Arai, K., 1987, Common signal transduction system by STE2 and STE3 in haploid cells of Saccharomyces cerevisiae: Autocrine cell-cycle arrest results from forced expression of STE2, EMBO J. 6: 249–254.

    PubMed  CAS  Google Scholar 

  • Navarrete, R., and Serrano, R., 1983, Solubilization of yeast plasma membranes and mitochondria by different types of nondenaturating detergents, Biochim. Biophys. Acta 728: 403–408.

    PubMed  CAS  Google Scholar 

  • Neff, N. F., Thomas, J. H., Grisafi, P., and Botstein, D., 1983, Isolation of the 13-tubulin gene from yeast and demonstration of its essential function in vivo, Cell 33: 211–215.

    PubMed  CAS  Google Scholar 

  • Newman, A. J., Lin, R., Cheng, S., and Abelson, J., 1985, Molecular consequences of specific intron mutations on yeast mRNA splicing in vivo and in vitro, Cell 42: 335–344.

    PubMed  CAS  Google Scholar 

  • Ng, R., and Abelson, J., 1980, Isolation of the gene for actin in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 77: 3912–3916.

    PubMed  CAS  Google Scholar 

  • Niedermeyer, W., 1976, The elasticity of the yeast cell tonoplast related to its ultrastructure and chemical composition. II. Chemical and cytochemical investigations, Cytobiology 13: 380–393.

    CAS  Google Scholar 

  • Nomura, M., Gourse, R., and Baughman, G., 1984, Regulation of the synthesis of ribosomes and ribosomal components Annu. Rev. Biochem. 53: 75–117.

    PubMed  CAS  Google Scholar 

  • Novick, P., 1985, Intracellular transport mutants of yeast, Trends Biochem. Sci. 10: 432–434.

    CAS  Google Scholar 

  • Novick, P., and Botstein, D., 1985, Phenotypic analysis of temperature-sensitive yeast actin mutants, Cell 40: 405–416.

    PubMed  CAS  Google Scholar 

  • Novick, P., Field, C., and Schekman, R., 1980, Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway, Cell 21: 205–215.

    PubMed  CAS  Google Scholar 

  • Novick, P., Ferro, S., and Schekman, R., 1981, Order of events in the yeast secretory pathway, Cell 25: 461–469.

    PubMed  CAS  Google Scholar 

  • Orlean, P., 1987, Two chitin synthases in Saccharomyces cerevisiae, J. Biol. Chem. 262: 5732–5739.

    PubMed  CAS  Google Scholar 

  • Orlean, P., Ammer, H., Watzele, M., and Tanner, W., 1986, Synthesis of an 0-glycosylated cell surface protein induced in yeast by a-factor, Proc. Natl. Acad. Sci. USA 83: 6263–6266.

    PubMed  CAS  Google Scholar 

  • Otaka, E., and Osawa, S., 1981, Yeast ribosomal proteins. V. Correlation of several nomenclatures and proposal of a standard nomenclature, Mol. Gen. Genet. 181: 176–182.

    CAS  Google Scholar 

  • Otaka, E., Higo, K., and Osawa, S., 1982, Isolation of seventeen proteins and aminoterminal amino sequences of eight proteins from cytoplasmic ribosomes of yeast, Biochemistry 21: 4545–4550.

    PubMed  CAS  Google Scholar 

  • Otaka, E., Higo, K., and Itoh, T., 1983, Yeast ribosomal proteins. VII. Cytoplasmic ribosomal proteins from Schizosaccharomyces pombe, Mol. Gen. Genet. 191: 519–524.

    PubMed  CAS  Google Scholar 

  • Padgett, R. A., Grabowski, P. J., Konarska, M. M., and Sharp, P., 1985, Splicing messenger RNA precursors: Branch sites and lariat RNAs, Trends Biochem. Sci. 10: 154–157.

    CAS  Google Scholar 

  • Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S., and Sharp, P., 1986, Splicing of messenger RNA and RNA precursors, Annu. Rev. Biochem. 55: 1119–1150.

    PubMed  CAS  Google Scholar 

  • Pastor, F. I. J., Valentin, E., Herrero, E., and Sentandreu, R., 1984, Structure of the Saccharomyces cerevisiae cell wall. Mannoproteins released by zymolyase and their contribution to wall architecture, Biochim. Biophys. Acta 802: 292–300.

    CAS  Google Scholar 

  • Payne, G. S., and Schekman, R., 1985, A test of clathrin function in protein secretion and cell growth, Science 230: 1009–1014.

    PubMed  CAS  Google Scholar 

  • Peberdy, J. F., 1979, Fungal protoplasts: Isolation, reversion, and fusion, Annu. Rev. Microbiol. 33: 21–39.

    PubMed  CAS  Google Scholar 

  • Peebles, C. L., Gegenheimer, P., and Abelson, J., 1983, Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease, cell 32: 525–536.

    PubMed  CAS  Google Scholar 

  • Peterson, J. B., and Ris, H., 1976, Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae, J. Cell Sci. 22: 219–242.

    PubMed  CAS  Google Scholar 

  • Pikielny, C. W., Rymond, B. C., and Rosbash, M., 1986, Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes, Nature 324: 341–345.

    PubMed  CAS  Google Scholar 

  • Planta, R. J., Mager, W. H., Leer, R. J., Woudt, L. P., Raue, H. A., and El-Baradi, T. T. A. L., 1986, Structure and expression of ribosomal protein genes in yeast, in: Structure, Function, and Genetic of Ribosomes ( B. Hardesty and G. Kramer, eds.), Springer-Verlag, New York, pp. 699–718.

    Google Scholar 

  • Prasad, R., 1985, Lipids in the structure and function of yeast membrane, Adv. Lipid Res. 21: 187–242.

    PubMed  CAS  Google Scholar 

  • Prasad, R., and Rose, A. H., 1986, Involvement of lipids in solute transport in yeasts, Yeast 2: 205–220.

    PubMed  CAS  Google Scholar 

  • Pringle, J. R., 1975, Methods for avoiding proteolytic artefacts in studies of enzymes and other proteins from yeast, Meth. Cell Biol. 12: 149–184.

    CAS  Google Scholar 

  • Pringle, J. R., and Hartwell, L. H., 1981, The Saccharomyces cerevisiae cell cycle, in: The Molecular Biology of the Yeast Saccharomyces, Life Cycle and Inheritance ( J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 97–142.

    Google Scholar 

  • Racker, E., 1950, Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids, Biochim. Biophys. Acta 4: 211–214.

    PubMed  CAS  Google Scholar 

  • Ramirez, R. M., Ishida-Schick, T., Krilowicz, B. L., Leish, B. A., and Atkinson, K. D., 1983, Plasma membrane expansion terminates in Saccharomyces cerevisiae secretion-defective mutants while phospholipid synthesis continues, J. Bacteriol. 154: 1276–1283.

    PubMed  CAS  Google Scholar 

  • Ramirez, J. M., Gallego, G. G., and Serrano, R., 1984, Electron transfer constituents in plasma membrane fractions of Avena sativa and Saccharomyces cerevisiae, Plant Sci. Lett. 34: 103–110.

    CAS  Google Scholar 

  • Rank, G. H., Gerlach, J. H., Robertson, A. J., and Van Hoeven, R. P., 1978, High viscosity vesicles of yeast separated at pH 4 have surface glycoproteins, Nature 273: 682–684.

    PubMed  CAS  Google Scholar 

  • Rattray, J. B. M., Schibeci, A., and Kidby, D. K., 1975, Lipids of yeast, Bacteriol. Rev. 39: 197–231.

    PubMed  CAS  Google Scholar 

  • Rickwood, D., and Hayes, A., 1984, An evaluation of methods used to prepare yeast mitochondria for transcriptional studies, Prep. Biochem. 14: 163–171.

    PubMed  CAS  Google Scholar 

  • Riezman, H., 1985, Endocytosis in yeast: Several of the yeast secretory mutants are defective in endocytosis, Cell 40: 1001–1009.

    PubMed  CAS  Google Scholar 

  • Riezman, H., Hay, R., Gasser, S., Daum, G., Schneider, G., Witte, C., and Schatz, G., 1983, The outer membrane of yeast mitochondria: Isolation of outside-out sealed vesicles, EMBO J. 2: 1105–1111.

    PubMed  CAS  Google Scholar 

  • Riezman, H., Chvatchko, Y., and Dulic, V., 1986, Endocytosis in yeast, Trends Biochem. Sci. 11: 325–328.

    CAS  Google Scholar 

  • Roberts, R. L., Bowers, B., Slater, M. L., and Cabib, E., 1983, Chitin synthesis and localization in cell division cycle mutants of S. cerevisiae, Mol. Cell. Biol. 3: 922–930.

    PubMed  CAS  Google Scholar 

  • Robertson, A. J., Gerlach, J. H., Rank. G. H., and Fowke, L. C., 1980, Yeast cell wall, membrane, and soluble marker polypeptides identified by comparative two-dimensional electrophoresis, Can. J. Biochem. 58: 567–572.

    Google Scholar 

  • Rodriguez, J. R., Pikielny, C. W., and Rosbash, M., 1984, In vivo characterization of yeast mRNA processing intermediates, Cell 39: 603–610.

    CAS  Google Scholar 

  • Rosamond, J., 1982, The molecular biology of the mitochondrion, Biochem. J. 202: 1–8.

    PubMed  CAS  Google Scholar 

  • Rothblatt, J. A., and Meyer, D. I., 1986a, Secretion in yeast: Reconstitution of the translocation and glycosylation of a-factor and invertase in a homologous cell-free system, Cell 44: 619–628.

    PubMed  CAS  Google Scholar 

  • Rothblatt, J. A., and Meyer, D. E., 1986b, Secretion in yeast: Translocation and glycosylation of prepro-a-factor in vitro can occur via an ATP-dependent post-translational mechanism, EMBO J. 5: 1031–1036.

    PubMed  CAS  Google Scholar 

  • Rubtsov, P. M., Musakhanov, M. M., Zakharyev, V. M., Krayev, A. S., Skryabin, K. G., and Bayev, A. A., 1980, The structure of the yeast ribisomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae, Nucl. Acids Res. 8: 5779–5794.

    PubMed  CAS  Google Scholar 

  • Sanz, P., Herrero, E., and Sentandreu, R., 1987, Secretory pattern of a major integral mannoprotein of the yeast cell wall, Biochim. Biophys. Acta 924: 193–203.

    CAS  Google Scholar 

  • Schatz, G., and Butow, R. A., 1983, How are proteins imported into mitochondria? Cell 32: 316–318.

    PubMed  CAS  Google Scholar 

  • Schatz, G., and Klima, J., 1964, Triphosphopyridine nucleotide: Cytochrome c reductase of Saccharomyces cerevisiae: a microsomal enzyme, Biochim. Biophys. Acta 81: 448–461.

    PubMed  CAS  Google Scholar 

  • Schatz, P. J., Pillus, L., Grisafi, P., Solomon, F., and Botstein, D., 1986a, Two functional atubulin genes of the yeast Saccharomyces cerevisiae encode divergent proteins, Mol. Cell Biol. 6: 3711–3721.

    PubMed  CAS  Google Scholar 

  • Schatz, P. J., Solomon, F., and Botstein, D., 1986b, Genetically essential and non-essential a-tubulin genes specify functionally interchangeable proteins. Mol. Cell Biol. 6: 3722–3733.

    PubMed  CAS  Google Scholar 

  • Schekman, R., 1982, Biochemical markers for yeast organelles, in: The Molecular Biology of the Yeast Saccharomyces, Metabolism and Gene Expression Q. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 651–652.

    Google Scholar 

  • Schekman, R., 1985, Protein localization and membrane traffic in yeast, Annu. Rev. Cell Biol. 1: 167–195.

    Google Scholar 

  • Schekman, R., and Brawley, V. L., 1979, Localized deposition of chitin on the yeast cell surface in response to pheromone, Proc. Natl. Acad. Sci. USA 76: 645–649.

    PubMed  CAS  Google Scholar 

  • Schekman, R., and Novick, P., 1982, The secretory process and yeast cell surface assembly, in:: The Molecular Biology of the Yeast Saccharomyces, Metabolism and Gene Expression U. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 361–393.

    Google Scholar 

  • Schmidt, R., Ackermann, R., Kratky, Z., Wassermann, B., and Jacobson, B., 1983, Fast and efficient purification of yeast plasma membranes using cationic silica microbeads, Biochim. Biophys. Acta 732: 421–427.

    PubMed  CAS  Google Scholar 

  • Schneider, J. C., and Guarente, L., 1987, The untranslated leader of nuclear COX4 gene of Saccharomyces cerevisiae contains an intron, Nucl. Acids Res. 15: 3515–3529.

    PubMed  CAS  Google Scholar 

  • Schultz, L. D., 1978, Transcriptional role of yeast deoxyribonucleic acid dependent ribonucleic acid polymerase III, Biochemistry 17: 750–758.

    PubMed  CAS  Google Scholar 

  • Schwaiger, H., Hasilik, A., von Figura, K. Wiemken, A., and Tanner, W., 1982, Carbohydrate-free carboxypeptidase Y is transferred into the lysosome-like yeast vacuole, Biochem. Biophys. Res. Commun. 104: 950–956.

    CAS  Google Scholar 

  • Schwartz, D. C., and Cantor, C. R., 1984, Separation of yeast chromosome-sized DNAs by pulse field gradient gel electrophoresis, Cell 37: 67–75.

    PubMed  CAS  Google Scholar 

  • Schwencke, J., 1977, Characteristics and integration of the yeast vacuole with cellular function, Physiol. Veg. 15: 491–517.

    CAS  Google Scholar 

  • Schwenke, J., Canut, H., and Flores, A., 1983, Simultaneous isolation of the yeast cytosol and well-preserved mitochondria with negligible contamination by vacuolar proteinases, FEBS Lett. 156: 274–280.

    Google Scholar 

  • Sentandreu, R., Herrero, E., and Elorza, M. V., 1984, The assembly of wall polymers in yeast, FEMS Symp. 27: 51–61.

    CAS  Google Scholar 

  • Shematek, E. M., and Cabib, E., 1980, Biosynthesis of the yeast cell wall. II. Regulation of ß-(1–3) glucan synthetase by ATP and GTP, J. Biol. Chem. 255: 895–902.

    PubMed  CAS  Google Scholar 

  • Shematek, E. M., Braatz, J. A., and Cabib, E., 1980, Biosynthesis of the yeast cell wall: I. Preparation and properties of ß-(1–3) glucan synthetase, J. Biol. Chem. 255: 888–894.

    CAS  Google Scholar 

  • Sherman, F., 1982, Suppression in the yeast Saccharomyces cerevisiae, in: The Molecular Biology of the Yeast Saccharomyces, Metabolism and Gene Expression ( J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 463–486.

    Google Scholar 

  • Shortie, D., Harber, J., and Botstein, D., 1982, Lethal disruption of the yeast actin gene by DNA transformation, Science 217: 371–373.

    Google Scholar 

  • Shortie, D., Novick, P., and Botstein, D., 1984, Construction and genetic characterization of temperature-sensitive alleles of the yeast actin gene, Proc. Natl. Acad. Sci. USA 81: 4889–4893.

    Google Scholar 

  • Shulman, R. W., 1978, Yeast cell selection and synchrony: Density gradients and mating factor block, in: Methods in Cell Biology, Vol. 20 ( D. M. Prescott, ed.), Academic Press, New York, pp. 43–45.

    Google Scholar 

  • Silver, P. A., Keegan, L. P., and Ptashne, M., 1984, Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization, Proc. Natl. Acad. Sci. USA 81: 5951–5955.

    PubMed  CAS  Google Scholar 

  • Simon, M., Seraphin, B., and Faye, G., 1986, KIN28, a yeast split gene coding for a putative protein kinase homologous to CDC28, EMBO J. 5: 2697–2701.

    PubMed  CAS  Google Scholar 

  • Singh, A., Chen, E. Y., Lugovoy, J. M., Chang, C. N., Hitzman, R. A., and Seeburg, P. H., 1983, Saccharomyces cerevisiae contains two discrete genes coding for the a-factor phe-romne, Nucl. Acids Res. 11: 4049–4063.

    CAS  Google Scholar 

  • Sprague, G. F., Blair, L. C., and Thorner, J., 1983, Cell interactions and regulation of cell type in the yeast Saccharomyces cerevisiae, Annu. Rev. Microbiol. 37: 623–660.

    PubMed  CAS  Google Scholar 

  • Sprinzl, M., Moll, J., Meissner, F., and Hartmann, T, 1985, Compilation of tRNA sequences, Nucl. Acids Res. 13 (Suppl.): r1 — r50.

    Google Scholar 

  • Steere, R. L., and Erbe, E. F., and Moseley, J. M., 1980, Prefracture and cold-fracture images of yeast plasma membranes, J. Cell Biol. 86: 113–122.

    PubMed  CAS  Google Scholar 

  • Stevens, B., 1981, Mitochondrial structure, in: The Molecular Biology if the Yeast Saccharomyces, Life Cycle and Inheritance ( I. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 471–504.

    Google Scholar 

  • Stötzler, D., Kiltz, H.-H., and Duntze, W, 1976.,Primary structure of a-factor peptides from Saccharomyces cerevisiae, Eur. J. Biochem. 69: 397–400.

    Google Scholar 

  • Swida, U., Kreutzfeldt, C., Ramezani-Rad, M., and Käufer, N., 1982, Isolation and characterization of rough and smooth endoplasmic reticulum from Saccharomyces cerevisiae, FEMS Microbiol. Lett. 15: 313–318.

    CAS  Google Scholar 

  • Tanner, W., 1984, Regulation of glycoprotein synthesis in yeast by mating pheromones, in: Structure, Function, and Biosynthesis of Plant Cell Walls, Proc. Annu. Symp. Bot., 7th, ( M. W. Dugger and S. Bartinicki-Garcia, eds.), Waverly Press, Baltimore, pp. 20–32.

    Google Scholar 

  • Tanner, W., and Lehle, L., 1987, Protein glycosylation in yeast, Biochim. Biophys. Acta 906: 81–99.

    PubMed  CAS  Google Scholar 

  • Tarentino, A. L., Plummer, T. H., and Maley, F., 1974, The release of intact oligosaccharides from specific glycoproteins by endo-ß-N-acetylglucosaminidase H, J. Biol. Chem. 249: 818–824.

    PubMed  CAS  Google Scholar 

  • Teem, J. L. Abovich, N., Käufer, N. F., Schwindinger, W. F., Warner, J. R., Levy, A., Wooldford, J., Leer, R. J., van Ramsdonk-Duin, M. M. C., Mager, W. H., Planta, R. J., Schultz, L., Friesen, J. D., Fried, H., and Rosbash, M., 1984, A comparison of yeast ribosomal protein gene DNA sequences, Nucl. Acids Res. 12: 8295–8312.

    Google Scholar 

  • Thorner, J., 1981, Pheromonal regulation of development in Saccharomyces cerevisiae, in: The Molecular Biology of the Yeast Saccharomyces, Life Cycle and Inheritance U. N. Strathern, E. W. Jones, and J. R. Borach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 143–180.

    Google Scholar 

  • Thorner, J., 1982, An essential role of cyclic AMP in growth control: The case of yeast, Cell 30: 5–6.

    PubMed  CAS  Google Scholar 

  • Tijssen, J. P. F., Beekes, H. W., and van Steveninck, J., 1981, Localization of polyphosphates at the outside of the yeast cell plasma membrane, Biochim. Biophys. Acta 649: 529–532.

    PubMed  CAS  Google Scholar 

  • Tohoyama, H., and Yanagishima, N., 1981, Changes in the sexual agglutination ability during the formation of vegetative cells from spores in Saccharomyces cerevisiae, Mol. Gen. Genet. 183: 205–208.

    CAS  Google Scholar 

  • Tohoyama, H., Yoshida, M. H. K., and Yanagishima, N., 1979, Regulation of the production of the agglutination substances responsible for sexual agglutination in Saccharomyces cerevisiae: Changes associated with conjugation and temperature shift, Mol. Gen. Genet. 174: 269–280.

    CAS  Google Scholar 

  • Towler, D., and Glaser, L., 1986, Protein fatty acid acylation: Enzymatic synthesis of an Nmyristoylglycyl peptide, Proc. Natl. Acad. Sci. USA 83: 2812–2816.

    PubMed  CAS  Google Scholar 

  • Trembath, M. K., and Tzagoloff, A., 1979, Large-and small-scale preparations of yeast mitochondria, Meth. Enzymol. 55: 160–170.

    PubMed  CAS  Google Scholar 

  • Trimble, R. B., and Atkinson, P. H., 1986, Structure of yeast external invertase Man8,14GZcNAc processing intermediates by 500-megahertz ‘H NMR spectroscopy, J. Biol. Chem. 261: 9815–9824.

    PubMed  CAS  Google Scholar 

  • Trimble, R. B., Maley, F., and Chu, F. L., 1983, Glycoprotein biosynthesis in yeast: Protein conformation affects processing of high mannose oligosaccharides and carboxypeptidase Y and invertase, J. Biol. Chem. 258: 2562–2567.

    PubMed  CAS  Google Scholar 

  • Trivedi, A., Fantin, D. J., and Tustanoff, E. R., 1985, Saccharomyces cerevisiae as a model eukaryote for studies on mitochondriogenesis, Microbiol. Sci. 2: 10–13.

    CAS  Google Scholar 

  • Tsai, P. -K., Frevert, J., and Ballon, C. E., 1984, Carbohydrate structure of Saccharomyces cerevisiae mnn9 mannoprotein, J. Biol. Chem. 259: 3805–3811.

    PubMed  CAS  Google Scholar 

  • Tschopp, J., and Schekman, R., 1983, Two distinct subfractions in isolated Saccharomyces cerevisiae plasma membranes, J. Bacteriol. 156: 222–229.

    PubMed  CAS  Google Scholar 

  • Tschopp, J., Esmon, P. C., and Schekman, R., 1984, Defective plasma membrane assembly in yeast secretory mutants, J. Bacteriol. 160: 966–970.

    PubMed  CAS  Google Scholar 

  • Urech, K., Dürr, M., Boller, T., and Wiemken, A., 1978, Localization of polyphosphate in vacuoles of Saccharomyces cerevisiae, Arch. Microbiol. 116: 275–278.

    CAS  Google Scholar 

  • Valentin, E., Herrero, E., Pastor, F. I. J., and Sentandreu, R., 1984, Solubilization and analysis of mannoprotein molecules from the cell wall of Saccharomyces cerevisiae, J. Gen. Microbiol. 130: 1419–1428.

    CAS  Google Scholar 

  • Van der Wilden, W., Matile, P., Schellenberg, M., Meyer, J., and Wiemken, A., 1973, Vacuolar membranes: Isolation from yeast cells, Z. Naturforsch. 28c: 416–421.

    Google Scholar 

  • Veldman, G. M., Klootwijk, J., de Regt, V. C. H. F., and Planta, R. J., 1981a, The primary and secondary structure of yeast 26S rRNA, Nucl. Acids Res. 9: 6936–6952.

    Google Scholar 

  • Veldman, G. M., Klootwijk, J. van Heerikhuizen, H., and Planta, R. J., 1981b, The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interactions between 5.8S and 26S rRNA and the processing of the primary transript, Nucl. Acids Res. 9: 4847–4862.

    Google Scholar 

  • Vignais, M-L., Woudt, L. P., Wassenar, G. M., Mager, W. H., Sentenac, A., and Planta, R. J., 1987, Specific binding of TUF factor to upstream activation sites of yeast ribosomal protein genes, EMBO J. 6: 1451–1457.

    PubMed  CAS  Google Scholar 

  • Walter, P., and Lingappa, V. R., 1986, Mechanism of protein translocation across endoplasmic reticulum membrane, Annu. Rev. Cell Biol. 2: 499–516.

    PubMed  CAS  Google Scholar 

  • Warner, J. R., 1982, The yeast ribosome: Structure, function, and synthesis, in: The Molecular Biology of the Yeast Saccharomyces, Metabolism and Gene Expression ( J. N. Strathern, E. W. Jones, and J. R. Broach, eds.), Cold Spring Harbor Monograph Series, Cold Spring Harbor, NY, pp. 529–560.

    Google Scholar 

  • Warner, J. R., Mitra, G., Schwindinger, W. F., Studeng, M., and Fried, H. W., 1985, Saccharomyces cerevisiae coordinates accumulation of yeast ribosomal proteins by modulating mRNA splicing, translational initiation, and protein turnover, Mol. Cell Biol. 5: 1512–1521.

    CAS  Google Scholar 

  • Warner, J. R., Elion, E. A., Dabeva, M. D., and Schwindinger, W. F., 1986, The ribosomal genes of yeast and their regulation, in: Structure, Function, and Genetic of Ribosomes ( B. Hardesty and G. Kramer, eds.), Springer-Verlag, New York, pp. 719–732.

    Google Scholar 

  • Waters, M. G., and Blobel, G., 1986, Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis, J. Cell Biol. 102: 1543–1550.

    PubMed  CAS  Google Scholar 

  • Welch, J. W., and Burlingame, A. L., 1973, Very long chain fatty acids in yeast, J. Bacteriol. 115: 464–466.

    CAS  Google Scholar 

  • Welten-Verstegen, G. W., Boer, P., and Stern-Parve, E. P., 1980, Lipid-mediated glycosylation of endogenous proteins in isolated plasma membranes of Saccharomyces cerevisiae, J. Bacteriol. 141: 342–349.

    CAS  Google Scholar 

  • Wen, D., and Schlesinger, M. J., 1984, Fatty acid-acylated proteins in secretory mutants of Saccharomyces cerevisiae, Mol. Cell Biol. 4: 688–694.

    CAS  Google Scholar 

  • Wiemken, A., Matile, P., and Moor, H., 1970, Vacuolar dynamics in synchronously budding yeast, Arch. Microbiol. 70: 89–103.

    CAS  Google Scholar 

  • Wiemken, A., Schellenberg, M., and Urech, K., 1979, Vacuoles: The sole compartments of digestive enzymes in yeast (Saccharomyces cerevisiae), Arch. Microbiol. 123: 23–35.

    CAS  Google Scholar 

  • Witt, W., Schweingruber, M. E., and Mertsching, A., 1984, Phospholipase B from the plasma membrane of Saccharomyces cerevisiae: Separation of two forms with different carbohydrate content, Biochem. Biophys. Acta 795: 108–116.

    PubMed  CAS  Google Scholar 

  • Wolf, D. H., 1986, Cellular control in the eukaryotic cell through action of proteinases: The yeast Saccharomyces cerevisiae as a model organism, Microbiol. Sci. 3: 107–114.

    PubMed  CAS  Google Scholar 

  • Woudt, L. P., Smit, A. B., Mager, W. H., and Planta, R. J., 1986, Conserved sequence elements upstream of the gene encoding yeast ribosomal protein L25 are involved in transcription activation, EMBO J. 5: 1037–1040.

    PubMed  CAS  Google Scholar 

  • Yaffe, M., 1983, Import of proteins into mitochondria, a survey, in: Mitochondria ‘83, Nucleo—mitochrondrial Interactions ( R. J. Schweijen, K. Wolf, and F. Kaudewitz, eds.), Walter deGruyter Verlag, Berlin, pp. 47–55.

    Google Scholar 

  • Yamaguchi, M., Yoshida, K., and Yanagishima, N., 1984, Isolation and biochemical and biological characterization of an a-mating-type-specific glycoprotein for sexual agglutination from the cytoplasm of a-cells in the yeast Saccharomyces cerevisiae, Arch. Microbiol. 140: 113–119.

    CAS  Google Scholar 

  • Zickler, D., and Olson, L. W., 1975, The synaptonemal complex and the spindle plaque during meiosis in yeast, Chromosoma 50: 1–23.

    PubMed  CAS  Google Scholar 

  • Zimmerman, R., and Meyer, D. I., 1986, 1986: A year of new insights into how proteins cross membranes, Trends Biochem. Sci. 11: 512–515.

    Google Scholar 

  • Zinker, S., and Warner, J. R., 1976, The ribosomal proteins of Saccharomyces cerevisiae, phosphorylated and exchangeable proteins, J. Biol. Chem. 251: 1799–1807.

    PubMed  CAS  Google Scholar 

  • Zlotnik, H., Fernandez, M. P., Bowers, B., and Cabib, E., 1984, Saccharomyces cerevisiae mannoproteins form in external cell wall layer that determines wall porosity, J. Bacteriol. 159: 1018–1026.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kreutzfeldt, C., Witt, W. (1991). Structural Biochemistry. In: Tuite, M.F., Oliver, S.G. (eds) Saccharomyces. Biotechnology Handbooks, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2641-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2641-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2643-2

  • Online ISBN: 978-1-4899-2641-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics