Skip to main content

Abstract

Those investigating plant immune systems are faced with a dilemma. Disease resistance/ susceptibility in plants exhibit a high degree of specificity at many levels; however, specific mechanisms for eliciting resistance and specific mechanisms for disease resistance have not been established. Based on the current literature, the presence or absence of genetic information for resistance mechanisms are not determinants of disease resistance in plants. This is true when one considers phytoalexins, hydroxyproline-rich glycoproteins, lignin, callose, peroxidases, chitinases, β-1, 3-glucanases, and pathogenesis-related proteins. The mechanisms for resistance also lack specificity in their action against specific pathogens. The chemical agents reported to elicit resistance, whether derived from pathogens or synthetic, are also notable for their lack of specificity. To add to the dilemma, pathogens can often induce systemic resistance against completely unrelated pathogens, e.g., fungi against viruses, viruses against fungi (Dean and Kuć, 1987a; Kuć, 1982, 1983, 1984, 1985a–c, 1987a; Kuć and Preisig, 1984; Thzun and Kuć, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahl, P., and Gianinazzi, S., 1982, b-protein as a constitutive component in highly (TMV) resistant interspecific hybrids of N. glutinosa x N. debneyi, Plant Sci. Lett. 26: 173–181.

    Google Scholar 

  • Bartnicki-Garcia, S., 1968, Cell wall chemistry, morphogenesis, and taxonomy of fungi, Annu. Rev. Microbial. 22: 87–108.

    Article  CAS  Google Scholar 

  • Boller, T., and Metraux, J. P., 1988, Extracellular localization of chitinase in cucumber, Physiol. Mol. Plant Pathol. 33: 11–16.

    Article  CAS  Google Scholar 

  • Boller, T., and Vogeli, U., 1984, Vacuolar localization of ethylene-induced chitinase in bean leaves. Plant Physiol. 74:442-ß444.

    Google Scholar 

  • Boller, T., Gehri, A., Mauch, F. and Vogeli, U., 1983, Chitinase in bean leaves: Induction by ethylene, purification, properties, and possible function, Planta 157: 22–31.

    Article  CAS  Google Scholar 

  • Bostock, R., Kud, J., and Laine, R., 1981, Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in potato, Science 212: 67–69.

    Article  PubMed  CAS  Google Scholar 

  • Bostock, R., Laine, R., and Kud, J., 1982, Factors affecting the elicitation of sesquiterpenoid phytoalexin accumulation by eicosapentaenoic and arachidonic acids in potato, Plant Physiol. 70: 1417–1424.

    Article  PubMed  CAS  Google Scholar 

  • Buonaurio, R., Torre, G. D., and Montalbini, P, 1987, Soluble superoxide dismutase (SOD) in susceptible and resistant host-parasite complexes of Phaseolus vulgaris and Uromyces phaseoli, Physiol. Mol. Plant Pathol. 31: 173–184.

    Article  CAS  Google Scholar 

  • Carr, J. P., Dixon, D. C., and Klessig, D. F., 1985, Synthesis of pathogenesis-related proteins in tobacco is regulated at the level of mRNA accumulation and occurs on membrane-bound polysomes, Proc. Natl. Acad. Sci. USA 82: 7999–8003.

    Article  PubMed  CAS  Google Scholar 

  • Caruso, F., and Kud, J., 1977, Field protection of cucumber, watermelon and muskmelon against Colletotrichum lagenarium by Colletotrichum lagenarium, Phytopathology 67: 1290–1292.

    Article  Google Scholar 

  • Caruso, F., and Kud, J., 1979, Induced resistance of cucumber to anthracnose and angular leaf spot by Pseudomonas lachrymans and Colletotrichum lagenarium, Physiol. Plant Pathol. 14: 191–201.

    Article  Google Scholar 

  • Chester, K. S., 1933, The problem of acquired physiological immunity in plants, Q. Rev. Biol. 8: 129–154, 275–324.

    Article  Google Scholar 

  • Clark, A. E., and Stone, B. A., 1962,13–1, 3-glucan hydrolases from the grape vine (Vilis vinifera) and other plants, Phytochemistry 1:175–188.

    Google Scholar 

  • Corbin, D. R., Sauer, N., and Lamb, C. J., 1987, Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants, Mol. Cell. Biol. 7: 4337–4344.

    PubMed  CAS  Google Scholar 

  • Costa, A. S., and Muller, G. W., 1980, Tristeza control by cross protection: A U.S.-Brazil cooperative success, Plant Dis. 64: 538–541.

    Article  Google Scholar 

  • Cox, J. E., Fraser, L. R., and Broadbent, P., 1976, Stem pitting of grape fruit. Field protection by the use of mild strains: An evaluation of trials in two climatic districts, in: Proc. 7th Conf. Int. Org. Citrus Virol. (E. C. Calavan, ed.), University of Florida Press, Gainesville, pp. 68–70.

    Google Scholar 

  • Coxon, D., 1982, Phytoalexins from other plants, in: Phytoalexins (J. Bailey and J. Mansfield, eds.), Blackie, Glasgow, pp. 106–132.

    Google Scholar 

  • Cruickshank, I. A. M., and Mandryk, M., 1960, The effect of stem infestation of tobacco with Peronospora tabacina Adam on foliage reaction to blue mold, J. Aust. Inst. Agric. Sci. 26: 369–372.

    Google Scholar 

  • Daly, J. M., 1987, Toxins as determinants of plant diseases, in: Molecular Determinants of Plant Diseases ( S. Nishimura, C. P. Vance, and N. Doke, eds.), Japan Scientific Societies Press/Springer-Verlag, Tokyo/Berlin, pp. 119–126.

    Google Scholar 

  • Darvill, A. G., and Albersheim, P, 1984, Phytoalexins and their elicitors—A defense against microbial infection in plants, Annu. Rev. Plant Physiol. 35: 243–275.

    Article  CAS  Google Scholar 

  • Davidson, A. D., Manners, J. M., Simpson, R. S., and Scott, K. J., 1988, Altered host gene expression in nearisogenic barley conditioned by different genes for resistance during infection by Erysiphe graminis f. sp. hordei. Physiol. Mol. Plant Pathol. 32: 127–139.

    Article  CAS  Google Scholar 

  • Dean, R. A., and Kud, J., 1986a, Induced systemic protection in cucumber: The effect of inoculum density on symptom development caused by Colletotrichum lagenarium in previously infected and uninfected plants, Phytopathology 76: 186–189.

    Article  Google Scholar 

  • Dean, R. A., and Kud, J., 1986b, Induced systemic resistance in cucumber: The source of the “signal,” Physiol. Plant Pathol. 28: 227–233.

    Article  Google Scholar 

  • Dean, R. A., and Kud, J., 1987a, Immunization against disease: The plants fight back, in: Fungal Infection of Plants ( G. F. Pegg and P G. Ayers, eds.), Cambridge University Press, London, pp. 383–410.

    Google Scholar 

  • Dean, R. A., and Kud, J., 1987b, Rapid lignification in response to wounding and infection as a mechanism for induced systemic protection in cucumber, Physiol. Mol. Plant Pathol. 31: 69–81.

    Article  CAS  Google Scholar 

  • De Wit, P. J. G. M., Buurlage, M., and Hammond, K. E., 1986, The occurrence of host-pathogen-and infection-specific proteins in the apoplasts of Cladosporium fulvum (syn. Fulvia fulva) infected tomato, Physiol. Mol. Plant Pathol. 29: 159–172.

    Article  Google Scholar 

  • Dixon, R. A., Gerrish, C., Lamb, C. J., and Robbins, M. P., 1983, Elicitor mediated induction of chalcone isomerase in Phaseolus vulgaris cell suspension cultures, Planta 159: 561–569.

    Article  CAS  Google Scholar 

  • Dixon, R. A., Bolwell, G. P., Hamdan, M. A. M. S., and Robbins, M. P., 1987, Molecular biology of induced resistance, in: Genetics and Plant Pathogenesis ( P. R. Day and G. J. Jellis, eds.), Blackwell, Oxford, pp. 245–259.

    Google Scholar 

  • Doke, N., 1983, Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by supressors of hypersensitivity, Physiol. Plant Pathol. 23: 359–367.

    Article  CAS  Google Scholar 

  • Doubrava, N. S., Dean, R. A., and Kud, J., 1988, Induction of systemic resistance to anthracnose caused by Colletotrichum lagenarium in cucumber by oxalate and extracts from spinach and rhubarb leaves, Physiol. Mol. Plant Pathol. 33: 69–80.

    Article  CAS  Google Scholar 

  • Durbin, R., 1981, Toxins in Plant Disease, Academic Press, New York.

    Google Scholar 

  • Ebel, J., 1986, Phytoalexin synthesis: The biochemical analysis of the induction process, Annu. Rev. Phytopathol. 24: 235–264.

    Article  CAS  Google Scholar 

  • Ecker, J. R., and Davis, R. W, 1987, Plant defense genes are regulated by ethylene, Proc. Natl. Acad. Sci. USA 84: 5202–5206.

    Article  PubMed  CAS  Google Scholar 

  • Elliston, J., Kud, J., and Williams, E., 1976, Protection of bean against anthracnose by Colletotrichum species nonpathogenic on bean, Phytopathol. Z. 86: 117–126.

    Article  Google Scholar 

  • Esquerré-Itigayé, M. T., Mazau, D., Pelissier, D., Roby, D., Rumeau, D., and Toppan, A., 1985, Induction by elicitors and ethylene of proteins associated to the defense of plants, in: Cellular and Molecular Biology of Plant Stress ( J. L. Key and T. Kosuge, eds.), Liss, New York, pp. 459–473.

    Google Scholar 

  • Fraser, R. S. S., 1981, Evidence for the occurrence of the ‘pathogenesis-related’ proteins in leaves of healthy tobacco plants during flowering, Physiol. Plant Pathol. 19: 69–76.

    CAS  Google Scholar 

  • Fraser, R. S. S., 1982, Are ‘pathogenesis-related’ proteins involved in acquired systemic resistance of tobacco plants to tobacco mosaic virus? J. Gen. Virol. 58: 305–313.

    Article  CAS  Google Scholar 

  • Fraser, R. S. S., and Clay, C. M., 1983, Pathogenesis-related proteins and acquired systemic resistance: Causal relationship or separate effects? Neth. J. Plant Pathol. 89:283–292

    Google Scholar 

  • Fry, S. C., 1982, Isodityrosine, a new cross-linking amino acid from plant cell wall glycoprotein, Biochem. J. 204: 449–455.

    PubMed  CAS  Google Scholar 

  • Gessler, C., and Kul, J., 1982, Appearance of a host protein in cucumber plants infected with viruses, bacteria and fungi, J. Exp. Bot. 33: 58–66.

    Article  CAS  Google Scholar 

  • Gianinazzi, S., and Kassanis, B., 1974, Virus resistance induced in plants by polyacrylic acid, J. Gen. Virol. 23: 1–9.

    Article  Google Scholar 

  • Gianinazzi, S., Ahi, P., Cornu, A., Scalia, R., and Cassini, R., 1980, First report of host b-protein appearance in response to fungal infection in tobacco, Physiol. Plant Pathol. 16: 337–342.

    CAS  Google Scholar 

  • Gottsteirf, H. D., and Kué, J., 1989, The induction of systemic resistance to anthracnose in cucumber by Phosphates, Phytopathology 79: 176–179.

    Article  Google Scholar 

  • Granell, A., Belles, J. M., and Conejerp, V., 1987, Induction of pathogenesis-related proteins in tomato by citrus exocortis, viroid, silver ion and ethephon, Physiol. Mol. Plant Pathol. 31: 83–90.

    Article  CAS  Google Scholar 

  • Guedes, M. E., Richmond, S., and Kul, J., 1980, Induced systemic resistance to anthracnose in cucumber as influenced by the location of the inducer inoculation with Colletotrichum lagenarium and onset of flowering and fruiting, Physiol. Plant Pathol. 17: 229–233.

    Article  Google Scholar 

  • Hammerschmidt, R., 1980, Lignification and related phenonolic metabolism in the induced systemic resistance of cucumber to Colletotrichum lagenarium and Cladosporium lagenarium, Ph.D. thesis, University of Kentucky.

    Google Scholar 

  • Hammerschmidt, R., and Kul, J., 1982, Lignification as a mechanism for induced systemic resistance in cucumber, Physiol. Plant Pathol. 20: 61–71.

    Article  CAS  Google Scholar 

  • Hammerschmidt, R., Nuckles, E., and Kul, J., 1982, Association of peroxidase activity with induced systemic resistance in cucumber to Colletotrichum lagenarium, Physiol. Plant Pathol. 20: 73–82.

    Article  CAS  Google Scholar 

  • Hammerschmidt, R., Lamport, D. T. A., and Muldoon, E. P, 1984, Cell wall hydroxy-proline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum, Physiol. Plant Pathol. 24: 43–47.

    Article  CAS  Google Scholar 

  • Hooft van Huijsduijnen, R. A. M., Van Loon, L. C., and Bol, J. F, 1986, cDNA cloning of six mRNAs induced by TMV infection of tobacco and a characterization of their translation products, EMBO J. 5: 2057–2061.

    Google Scholar 

  • Hooft van Huijsduijnen, R. A. M., Kauffmann, S., Brederode, F. T., Cornelissen, B. J. C., Legrand, M., Fritig, B., and Bol, J. F, 1987, Homology between chitinases that are induced by TMV infection of tobacco, Plant Mol. Biol. 9: 411–420.

    Article  Google Scholar 

  • Jenns, A., and Kul, J., 1979, Graft transmission of systemic resistance of cucumber to anthracnose induced by Colletotrichum lagenarium and tobacco necrosis virus, Phytopathology 69: 753–756.

    Article  Google Scholar 

  • Jenns, A., and Kué, J., 1980, Characteristics of anthracnose resistance induced by localized infection with tobacco necrosis virus, Physiol. Plant Pathol. 17: 81–91.

    Article  Google Scholar 

  • Kauffmann, S., Legrand, M., Geoffroy, P., and Fritig, B., 1987, Biological function of ‘pathogenesis-related’ proteins: Four PR proteins of tobacco have I, 3–3-glucanase activity, EMBO J. 6: 3209–3212.

    PubMed  CAS  Google Scholar 

  • Kombrink, E., Schroder, M., and Hahlbrock, K., 1988, Several “pathogenesis-related” proteins in potato are 1,3-ß-glucanases and chitinases, Pro. Natl. Acad. Sci. USA 85: 782–786.

    Article  CAS  Google Scholar 

  • Kul, J., 1982, Plant immunization-mechanisms and practical implications, in: Active Defense Mechanism in Plants ( R. K. S. Wood, ed.), Plenum Press, New York, pp. 157–178.

    Google Scholar 

  • Kué, J., 1983, Induced systemic resistance in plants to diseases caused by fungi and bacteria, in: The Dynamics of Host Defense ( J. A. Bailey and B. J. Deverall, eds.), Academic Press, New York, pp. 191–221.

    Google Scholar 

  • Kul, J., 1984, Phytoalexins and disease resistance mechanisms from a perspective of evolution and adaptation, in: Origin and Development of Adaptation, Pitman, London, pp. 100–118.

    Google Scholar 

  • Kul, J., 1985a, Increasing crop productivity and value by increasing disease resistance through non-genetic techniques, in: Forest Potentials: Productivity and Value ( R. Ballard, P. Sarnum, G. A. Ritchie, and J. K. Winjum, eds.), Weyerhaeuser Company, Centralia, WA, pp. 147–190.

    Google Scholar 

  • Kul, J., 1985b, Induced systemic resistance to plant disease and phytointerferons—Are they compatible? Fitopatol. Bras. 10: 17–40.

    Google Scholar 

  • Kul, J., 1985c, Expression of latent genetic information for disease resistance in plants, in: Cellular and Molecular Biology of Plant Stress ( J. L. Key and T. Kosuge, eds.), Liss, New York, pp. 303–318.

    Google Scholar 

  • Kul, J., 1987a, Plant immunization and its applicability for disease control, in: Innovative Approaches to Plant Disease Control ( J. Chet, ed.), Wiley, New York, pp. 255–274.

    Google Scholar 

  • Kul, J., 1987b, Translocated signals for plant immunization, Ann. N.Y. Acad. Sci. 494: 221–223.

    Article  Google Scholar 

  • Kul, J., and Preisig, C., 1984, Fungal regulation of disease resistance mechanisms in plants, Mycologia 76 (5): 767–784.

    Article  Google Scholar 

  • Kué, J., and Richmond, S., 1977, Aspects of the protection of cucumber against Colletotrichum lagenarium by Colletotrichum lagenarium, Phytopathology 67: 533–536.

    Google Scholar 

  • Kul, J., and Rush, J. S., 1985, Phytoalexins, Arch. Biochem. Biophys. 236: 455–472.

    Article  Google Scholar 

  • Kul, J., and Minn, S., 1983, Immunization for disease resistance in tobacco, Rec. Adv. Tobacco Sei. 9: 179–213.

    Google Scholar 

  • Kunoh, H., 1987, Induced susceptibility and enhanced resistance at the cellular level in barley coleoptiles, in: Molecular Determinants of Plant Diseases ( S. Nishimura, C. P. Vance, and N. Doke, eds.), Japan Scientific Societies Press/Springer-Verlag, Tokyo/Berlin, pp. 59–71.

    Google Scholar 

  • Lagramini, L. M., Burkhart, W, Moyer, M., and Rothstein, S., 1987, Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression, Proc. Nail. Acad. Sci. USA 84: 7542–7546.

    Article  Google Scholar 

  • Lamb, C. J., Bell, J. N., Cramer, C. C., Dildine, S. L., Grand, C., Hedrick, S. A., Ryder, T. B., and Showalter, A. M., 1986, Molecular response of plants to infection, in: Biotechnology for Solving Agricultural Problems (P. C. Augustine, H. D. Danforth, and M. R. Bakst, eds.), Nijhoff, The Hague, pp. 237–251.

    Chapter  Google Scholar 

  • Lawton, M. A., and Lamb, C. J., 1987, Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection, Mol. Cell. Biol. 7: 335–341.

    PubMed  CAS  Google Scholar 

  • Lazarovits, G., and Ward, E. W. B., 1982, Polyphenol oxidase activity in soybean hypocotyls at sites inoculated with Phytophthora megasperma f. sp. glycinea, Physiol. Plant Pathol. 21: 227–236.

    Article  CAS  Google Scholar 

  • Legrand, M., Kauffmann, S., Geoffroy, P., and Fritig, B., 1987, Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases, Proc. Natl. Acad. Sci. USA 84: 67506754.

    Google Scholar 

  • Markwalder, H. U., and Neukom, H., 1976, Diferulic acid as a possible cross link in hemicelluloses from wheat germ, Phytochemistry 15: 836–837.

    Article  CAS  Google Scholar 

  • Matsuoka, M., and Ohashi, Y., 1984, Biochemical and serological studies of pathogenesis-related proteins of Nicotiana spp., J. Gen. Virol. 64: 2209–2215.

    Article  Google Scholar 

  • Mazau, D., and Esquerré-bgayé, M. T, 1986, Hydroxyproline rich glycoprotein accumulation in the cell walls of plants infected by various pathogens, Physiol. Mol. Plant Pathol. 29: 147–157.

    Article  CAS  Google Scholar 

  • Mellon, J. E., and Helgeson, J. P., 1982, Interaction of a hydroxyproline-rich glycoprotein from tobacco callus with potential pathogens, Plant Physiol. 70: 401–405.

    Article  PubMed  CAS  Google Scholar 

  • Metraux, J. P., and Boller, T., 1986, Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections, Physic!. Mol. Plant Pathol. 28: 161–169.

    Article  CAS  Google Scholar 

  • Metraux, J. P., Streit, L., and Staub, T., 1988, A pathogenesis-related protein in cucumber is a chitinase, Physiol. Mol. Plant Pathol. 33: 1–9.

    Article  CAS  Google Scholar 

  • Nadolny, L., and Sequeira, L., 1980, Increases in peroxidases are not directly involved in induced resistance in tobacco, Physiol. Plant Pathol. 16: 1–8.

    Article  CAS  Google Scholar 

  • Nelson, R. S., Powell Abel, P, and Beachy, R. N., 1987, Lesions and virus accumulation in inoculated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic virus, Virology 158: 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi, Y., and Matsuoka, M., 1985, Synthesis of stress proteins in tobacco leaves, Plant Cell Physiol. 26: 473–480.

    CAS  Google Scholar 

  • Oku, H., Shiraishi, T, and Ouchi, S., 1987, Role of specific suppressors in pathogenicity of Mycosphaerella species, in: Molecular Determinants of Plant Diseases ( S. Nishimura, C. P. Vance, and N. Doke, eds.), Japan Scientific Societies Press/Springer-Verlag, Tokyo/Berlin, pp. 145–156.

    Google Scholar 

  • Parent, J. G., and Asselin, A., 1984, Detection of pathogenesis-related proteins (PR or b) and of other proteins in the intercellular fluid of hypersensitive plants infected with tobacco mosaic virus, Can. J. Bot. 62: 564–569.

    Article  CAS  Google Scholar 

  • Pegg, G. F., 1977, Glucanohydrolases of higher plants: A possible defence mechanism against parasitic fungi, in: Cell Wall Biochemistry Related to Specificity in Host-Pathogen Interaction ( B. Solheim and J. Raa, eds.), Universitaesforlaget, liomso, Norway, pp. 305–342.

    Google Scholar 

  • Pfitzner, U. M., and Goodman, H. M., 1987, Isolation and characterization of cDNA clones encoding patho-genesis-related proteins from tobacco mosaic virus infected plants, Nucleic Acid Res. 15: 4449–4465.

    Article  PubMed  CAS  Google Scholar 

  • Pierpoint, W. S., 1983, The major proteins in extracts of tobacco leaves that are responding hypersensitively to virus-infection, Phytochemistry 22: 2691–2697.

    Article  CAS  Google Scholar 

  • Pierpoint, W. S., 1986, The pathogenesis-related proteins of tobacco leaves, Phytochemistry 25:1595–1601. Politis, D. J., 1976, Ultrastructural study of penetration of maize leaves by Colletotrichum graminicola, Physiol. Plant Pathol. 3: 465–471.

    Google Scholar 

  • Powell Abel, P, Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T, and Beachy, R. N., 1986, Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science 232: 738–743.

    Article  Google Scholar 

  • Preisig, C. L., and Kud, J., 1987, Phytoalexins, elicitors, enhancers, suppressors, and other considerations in the regulation of R-gene resistance to Phytophthora infestans in potato, in: Biochemical and Molecular Determinants of Plant Disease ( S. Nishimura, C. P. Vance, and N. Doke, eds.), Japan Scientific Societies Press/ Springer-Verlag, Tokyo/Berlin, pp. 203–221.

    Google Scholar 

  • Richmond, S., Kué, J., and Elliston, J., 1979, Penetration of cucumber leaves by Colletotrichum lagenarium is reduced in plants systemically protected by previous infection with the pathogen, Physiol. Plant Pathol. 14: 329–338.

    Article  Google Scholar 

  • Roberts, D. A., 1983, Acquired resistance to tobacco mosaic virus transmitted to the progeny of hypersensitive tobacco, Virology 124: 161–163.

    Article  PubMed  CAS  Google Scholar 

  • Roby, D., Toppan, A., and Esquerré-Tugayé, M. T., 1985, Cell-surfaces in plant microorganism interactions. V. Elicitors of fungal and plant origin trigger the synthesis of ethylene and of cell-wall hydroxyproline rich glycoprotein in plants, Plant Physiol. 77: 700–704.

    Article  PubMed  CAS  Google Scholar 

  • Rosahl, S., Schell, J., and Willmitzer, L., 1987, Expression of a tube-specific storage protein in transgenic tobacco plants: Demonstration of an esterase activity, EMBO J. 6: 1155–1159.

    PubMed  CAS  Google Scholar 

  • Ross, A. F., 1966, Systemic effects of local lesion formation, in: Viruses of Plants ( A. B. R. Beemster and J. Dijkstra, eds.), North-Holland, Amsterdam, pp. 127–150.

    Google Scholar 

  • Salt, S. D., and Kué, J., 1985, Elicitation of disease resistance in plants by the expression of latent genetic information, in: Bioregulators for Pest Control ( P A. Hedin, ed.), American Chemical Society, Washington, D.C., pp. 47–68.

    Chapter  Google Scholar 

  • Sarkanen, K. V., 1971, Precursors and their polymerization, in: Lignins: Occurrence, Formation, Structure and Reactions ( K. V. Sarkanen and C. H. Ludwig, eds.), Wiley, New York, pp. 99–163.

    Google Scholar 

  • Schlumbaum, A., Mauch, F., Vogeli, U., and Boller T., 1986, Plant chitinases are potent inhibitors of fungal growth, Nature 324: 365–367.

    Article  CAS  Google Scholar 

  • Sequeira, L., 1983, Mechanisms of induced resistance in plants, Annu. Rev. Microbiol. 37: 51–79.

    Article  PubMed  CAS  Google Scholar 

  • Showalter, A. M., Bell, J. N., Cramer, C. L., Bailey, J. A., Varner, J. E., and Lamb, C. J., 1985, Accumulation of hydroxyproline-rich glycoprotein mRNAs in response to fungal elicitor and infection, Proc. Natl. Acad. Sci. USA 82: 6551–6555.

    Article  PubMed  CAS  Google Scholar 

  • Skujins, J. J., Potgeiter, H. J., and Alexander, M., 1965, Dissolution of fungal cell walls by a streptomycete chitinase and ß-(1, 3)-glucanase, Arch. Biochem. Biophys. 111: 358–364.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J., and Hammerschmidt, R., 1988, Comparative study of acidic peroxidases associated with induced resistance in cucumber, muskmelon and watermelon, Physiol. Mol. Plant Pathol. 33: 255–261.

    Article  CAS  Google Scholar 

  • Somssich, I. E., Schmelzer, E., Bollmann, J., and Hahlbrock, K., 1986, Rapid activation by fungal elicitor of genes encoding “pathogenesis-related” proteins in cultured parsley cells, Proc. Natl. Acad. Sci. USA 83: 2427 2430.

    Google Scholar 

  • Stermer, B. A., and Hammerschmidt, R., 1987, Association of heat shock induced resistance to disease with increased accumulation of insoluble extensin and ethylene synthesis, Physiol. Mol. Plant Pathol. 31: 453–461.

    Article  CAS  Google Scholar 

  • Stoessl, A., 1983, Secondary plant metabolites in preinfectional and postinfectional resistance, in: The Dynamics of Host Defense ( J. Bailey and B. Deverall, eds.), Academic Press, New York, pp. 71–122.

    Google Scholar 

  • Stolle, K., Zook, M., Shain, L., Hebard, F., and Kué, J., 1988, Restricted colonization by Peronospora tabacina and phytoalexin accumulation in immunized tobacco leaves, Phytopathology 78: 1193–1197.

    Article  Google Scholar 

  • Stumm, D., and Gessler, C., 1986, Role of papillae in the induced systemic resistance of cucumbers against Colletotrichum lagenarium, Physiol. Plant Pathol. 29: 405–410.

    Article  Google Scholar 

  • Sun, T. J., Melcher, U., and Essenberg, M., 1988, Inactivation of cauliflower mosaic virus by a photoactivatable cotton phytoalexin, Physiol. Mol. Plant Pathol. 33: 115–126.

    Article  CAS  Google Scholar 

  • Turner, N.E., O’Connel, K. M., Nelson, R. S., Sanders, P.R., Beachy, R. N., Fraley, R. T., and Shah, D. M., 1987, Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants, EMBO J. 6: 1181–1188.

    Google Scholar 

  • Thzun, S., and Kué, J., 1985a, A modified technique for inducing systemic resistance to blue mold and increasing growth of tobacco, Phytopathology 75: 1127–1129.

    Article  Google Scholar 

  • Minn, S., and Kué, J., 19856, Movement of a factor in tobacco infected with Peronospora tabacina Adam which systemically protects against blue mold, Physiol. Plant Pathol. 26: 321–330.

    Google Scholar 

  • Tuzun, S., and Kué, 1987, Persistence of induced systemic resistance to blue mold in tobacco plants derived via tissue culture, Phytopathology 77: 1032–1035.

    Article  Google Scholar 

  • Iitzun, S., and Kué, J., 1989, Induced systemic resistance to blue mold, in: Blue Mold of Tobacco (W. E. McKeen, ed.), American Phytopathological Society Press, St. Paul, pp. 177–200.

    Google Scholar 

  • Minn, S., Nesmith, W, and Kué, J., 1984, The effect of stem injections with Peronospora tabacina and metalaxyl treatment on growth of tobacco and protection against blue mold in the field, Phytopathology 74: 804.

    Google Scholar 

  • Tnun, S., Nesmith, W, Ferriss, R. S., and Kué, J., 1986, Effects of stem injections with Peronospora tabacina on growth of tobacco and protection against blue mold in the field, Phytopathology 76: 938–941.

    Article  Google Scholar 

  • Ihzun, S., Rao, M. N., Vogeli, U., Schardl, C. L., and Ku J., 1988, Early accumulation of 13–1, 3-glucanases, chitinases and other b-proteins in tobacco immunized against blue mold, (abstract), Phytopathology 78: 1556.

    Google Scholar 

  • Ibzun, S., Rao, M. N., Vogeli, U., Schardl, C. L., and Kud, J., 1989, Induced systemic resistance to blue mold: Early induction and accumulation of 13–1, 3-glucanases, chitinases, and other pathogenesis-related proteins (b-proteins) in immunized tobacco, Phytopathology 79: 979–983.

    Article  Google Scholar 

  • Van Holst, G., and Varner, J. E., 1984, Reinforced polypropylene II conformation in a hydrozyproline-rich cell wall glycoprotein from carrot root, Plant Physiol. 74: 247–251.

    Article  PubMed  Google Scholar 

  • Van Loon, L. C., 1977, Induction by 2-chloroethylphosphonic acid of viral like lesions, associated proteins, and systemic resistance in tobacco, Virology 80: 417–420.

    Article  PubMed  Google Scholar 

  • Van Loon, L. C., 1983, The induction of pathogenesis-related proteins by pathogens and specific chemicals, Neth. J. Plant Pathol. 89: 265–273.

    Article  Google Scholar 

  • White, R. F., 1979, Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco, Virology 99: 410–412.

    Google Scholar 

  • Wieringa-Brants, D. H., and Dekker, W. C., 1987, Induced resistance in hypersensitive tobacco against tobacco mosaic virus by injection of intercellular fluid from tobacco plants with systemic acquired resistance, J. Phytopathol. 118: 165–170.

    Article  Google Scholar 

  • Xuei, X. L., Jarlfors, U., and Kud, J.,1988, Ultrastructural changes associated with induced systemic resistance of cucumber to disease: Host response and development of Colletotrichum lagenarium in systemically protected leaves, Can. J. Bot. 66:1028–1038. •

    Google Scholar 

  • Ye, X. S., and Kué, J., 1988a, Systemic resistance to Peronospora tabacina induced by tobacco mosaic virus on tobacco cv. Ky 14, Phytopathology 78: 1547 (abstr.).

    Google Scholar 

  • Ye, X. S., and Kud, J., 1988b, Induced resistance to blue mold by Peronospora tabacina and tobacco mosaic virus elicits a similar pattern of b-proteins, Phytopathology 78: 1527 (abstr.).

    Google Scholar 

  • Young, D. H., and Pegg, G. F, 1981, Purification and characterization of I, 3–3-glucanase hydrolases from healthy and Verticillium albo-atrum infected tomato plants, Physiol. Plant Pathol. 19: 391–417.

    CAS  Google Scholar 

  • Young, D. H., and Pegg, G. F., 1982, The action of tomato and Verticillium albo-atrum glycosidases on the hyphal wall of V. albo-atrum, Physiol. Plant Pathol. 21: 411–423.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madamanchi, N.R., Kuć, J. (1991). Induced Systemic Resistance in Plants. In: Cole, G.T., Hoch, H.C. (eds) The Fungal Spore and Disease Initiation in Plants and Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2635-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2635-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2637-1

  • Online ISBN: 978-1-4899-2635-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics