Skip to main content

The Plant Cuticle

A Barrier to Be Overcome by Fungal Plant Pathogens

  • Chapter

Abstract

Most plant-pathogenic fungi gain access into their host by penetration of unwounded tissue. Some pathogens such as rusts invade the host via stomata (Hoch and Staples, 1987 and Chapter 2), whereas others penetrate the intact leaf surface without the requirement of natural openings (Aist, 1976; Emmett, 1975; Kunoh, 1984). The latter type of direct penetration encounters the plant cuticle, a noncellular hydrophobic structure covering the layer of epidermal cells. The cuticle thus serves as the first surface barrier that the pathogen has to breach. There is little evidence for the mere physical strength of the plant cuticle as a major factor in plant defense against pathogens. In some cases, the thickness of plant cuticles has been correlated with an increased passive resistance against fungal attack. This correlation, however, appears to be an exception rather than the rule (Martin, 1964). Furthermore, the cuticle has not been considered to play a major role in the active defense mechanisms of disease-resistant cultivars. There is good evidence that the cuticle is penetrated by the attacking pathogen before the sequential steps of disease development are halted by the active defense reactions of the challenged plant. Recent examples for this lack of cuticle involvement in cultivar resistance are the host—pathogen interactions of Venturia ivaequalis—apple (Valsangiacomo and Gessler, 1988) or Phytophthora infestans—potato (Gees and Hohl, 1987). The breaching of the cuticle can also be accomplished in many interactions of pathogens with nonhost plants (Heath, 1987).

The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aist, J. R., 1976, Cytology of penetration and infection, in: Physiological Plant Pathology, ( R. Heitefuss and P. H. Williams, eds.), Springer-Verlag, Berlin, pp. 197–221.

    Google Scholar 

  • Armentraut, V. N., and Downer, A. J., 1987, Infection cushion development by Rhizoctonia solani on cotton, Phytopathology 77: 619–623.

    Google Scholar 

  • Backhouse, D., and Willetts, H.J., 1987, Development and structure of infection cushions of Botrytis cinerea, Trans. Br. Mycol. Soc. 89: 89–95.

    Google Scholar 

  • Baker, C. J., and Bateman, D. F, 1978, Cutin degradation by plant pathogenic fungi, Phytopathology 68: 1577–1584.

    Google Scholar 

  • Baker, E. A., 1982, Chemistry and morphology of plant epicuticular waxes, in: The Plant Cuticle, ( D. F Cutler, K.L. Alvin, and C. E. Price, eds.), Academic Press, New York, pp. 139–166.

    Google Scholar 

  • Bashan, Y., Okon, Y., and Henis, Y., 1985, Detection of cutinases and pectic enzymes during infection of tomato by Pseudomonas syringae pv. tomato, Phytopathology 75: 940–945.

    CAS  Google Scholar 

  • Binyamini, N., and Schiffmann-Nadel, P., 1972, Latent infection in avocado fruit due to Colletotrichum gloeosporioides, Phytopathology 62: 592–594.

    Google Scholar 

  • Bird, R. E., Hardman, K.D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S.-M., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M., 1988, Single-chain antigen-binding proteins, Science 242: 423–426.

    PubMed  CAS  Google Scholar 

  • Blakeman, J. P. (ed.), 1981, Microbial Ecology of the Phylloplane, Academic Press, New York.

    Google Scholar 

  • Blakeman, J. P., and Atkinson, P., 1981, Antimicrobial substances associated with the aerial surface of plants, in: Microbial Ecology of the Phylloplane, ( J. P. Blakeman, ed.), Academic Press, New York, pp. 245–264.

    Google Scholar 

  • Bonnen, A. M., and Hammerschmidt, R., 1989a, Cutinolytic enzymes from Colletotrichum lagenarium, Physiol. Molec. Plant Pathol. 35: 463–474.

    CAS  Google Scholar 

  • Bonnen, A. M., and Hammerschmidt, R., 1989b, Role of cutinolytic enzymes in infection of cucumber by Colletotrichum lagenarium, Physiol. Molec. Plant Pathol. 35: 475–481.

    CAS  Google Scholar 

  • Brown, A., and Kolattukudy, P. E., 1978, Mammalian utilization of cutin, the cuticular polyester of plants, J. Agric. Food Chem. 26: 1263–1266.

    PubMed  CAS  Google Scholar 

  • Chau, K. E, and Alvarez, A. M., 1983, A histological study of anthracnose on Carica papaya, Phytopathology 73: 1113–1116.

    Google Scholar 

  • Coffey, M. D., and Wilson, U. E., 1983, Histology and cytology of infection and disease caused by Phytophthora in Phytophthora: Its Biology, Taxonomy, Ecology, and Pathology, (D. C. Erwin, S. Bartnicki-Garcia, and P H. Tsao, eds), American Phytopathological Society, St. Paul, pp. 289–301.

    Google Scholar 

  • Crawford, M. S., and Kolattukudy, P. E., 1987, Pectate lyasc from Fusarium. solani f. sp. pisi. Purification, characterization, in vitro translation of rthe mRNA, and the involvement in pathogenicity, Arch. Biochem. Biophys. 258: 196–205.

    PubMed  CAS  Google Scholar 

  • Dantzig, A. H.. Zuckerman, S. H., and Andonov-Roland, M. M., 1986, Isolation of a Fusarium solani mutant reduced in cutinase activity and virulence, J. Bacteriol. 168: 911–916.

    CAS  Google Scholar 

  • Davidse, L., 1987, Biochemical aspects of benzimidazole fungicides—Action and resistance, in: Modern Selective Fungicides ( H. Lyr, ed.), Wiley, New York, pp. 245–257.

    Google Scholar 

  • Dayhoff, M. O., 1972, Atlas of Protein Sequence and Structure, Volume 5, National Biomedical Research Foundation, Washington, D.C.

    Google Scholar 

  • de Vries, H., Bredemeijer, G., and Heinen, W, 1967, The decay of cutin and cuticular components by soil microorganisms in their natural environment, Acta Bot. Neerl. 16: 102–110.

    Google Scholar 

  • Dickman, M. B., Podila, G. K., and Kolattukudy, P E., 1989, Insertion of cutinase gene into a wound pathogen enables it to infect intact host, Nature 342: 446–448.

    CAS  Google Scholar 

  • Dickman, M. B., and Alvarez, A. M., 1983, Latent infection of papaya caused by Colletotrichum gloeosporioides, Plant Des. 67: 748–750.

    Google Scholar 

  • Dickman, M. B., and Patil, S. S., 1986, Cutinase deficient mutants of Colletotrichum gloeosporioides are nonpathogenic to papaya fruit, Physiol. Mol. Plant Pathol. 28: 235–242.

    CAS  Google Scholar 

  • Dickman, M. B., Patil, S. S., and Kolattukudy, P E., 1982, Purification, characterization and role in infection of an extracellular cutinolytic enzyme from Colletotrichum gloeosporioides Penz. on Carica papaya L., Physiol. Plant Pathol. 20: 333–347.

    CAS  Google Scholar 

  • Dickman, M. B., Patil, S. S., and Kolattukudy, P. E., 1983, Effects of organophosphorus pesticides on cutinase activity and infection of papayas by Colletotrichum gloeosporioides, Phytopathology 73: 1209–1214.

    CAS  Google Scholar 

  • Dodman, R. L., and Flentje, N. T., 1970, The mechanism and physiology of plant penetration by Rhizoctonia solani, in: Rhizoctonia Solani: Biology and Pathology ( J. R. Parmeter, ed.), University of California Press, Berkeley, pp. 149–160.

    Google Scholar 

  • Emmett, R. W, and Parbery, D. G., 1975, Appressoria, Annu. Rev. Phytopathol. 13: 147–167.

    Google Scholar 

  • Espelie, K. E., Köller, W, and Kolattukudy, P. E., 1983, 9,16-Dihydroxy-l0-oxo-hexadecanoic acid, a novel component in citrus cutin, Chem. Phys. Lipids 32: 13–26.

    Google Scholar 

  • Ettinger, W. F, Thukral, S. K., and Kolattukudy, P E., 1987, Structure of cutinase gene, cDNA, and the derived amino acid sequence from phytopathogenic fungi, Biochemistry 26: 7883–7892.

    CAS  Google Scholar 

  • Flurkey, W. H., and Kolattukudy, P E., 1981, In vitro translation of cutinase mRNA: Evidence for a precursor form of an extracellular fungal enzyme, Arch. Biochem, Biophys. 212: 154–161.

    CAS  Google Scholar 

  • Foster, R. J., and Kolattukudy, P. E., 1987, Enzymatic hydrolysis of diethylpyrocarbonate, a commonly used histidine modifying agent, by esterases, Int. J. Biochem. 19: 391–394.

    PubMed  CAS  Google Scholar 

  • Gees, R., and Hohl, H. R., 1987, Cytological comparison of specific (R3) and general resistance to late blight in potato leaf tissue, Phytopathology 78: 350–357.

    Google Scholar 

  • Gelb, M. H., Svaren, J. P., and Abeles, R. H., 1985, Fluoro ketone inhibitors of hydrolytic enzymes, Biochemistry 24: 1813–1817.

    Google Scholar 

  • Gessler, C., and Stumm, D., 1984, Infection and stroma formation by Venturia inaequalis on apple leaves with different degrees os susceptibility to scab, Phytopathol. Z. 110: 119–126.

    Google Scholar 

  • Godowski, P. J., and Picard, D., 1989, Steroid receptors: How to be both a receptor and a transcription factor, Biochem. Pharmacol. 38: 3135–3143.

    PubMed  CAS  Google Scholar 

  • Hamer, J. E., Howard, R. J., Chumley, F. G., and Valent, B., 1988, A mechanism for surface attachment in spores of a plant pathogenic fungus, Science 239: 288–290.

    PubMed  CAS  Google Scholar 

  • Hankin, L., and Kolattukudy, P.E., 1968, Metabolism of a plant wax paraffin (n-nonacosane) by a soil bacterium (Micrococcus cerificans), J. Gen. Microbial. 51: 457–463.

    CAS  Google Scholar 

  • Hankin, L., and Kolattukudy, P. E., 1971, Utilization of cutin by a pseudomonad isolated from soil, Plant Soil 34: 525–529.

    CAS  Google Scholar 

  • Hargreaves, J. A., Brown, G. A., and Holloway, P. J., 1982, The structural and chemical characteristics of the leaf surface of Lupinus albus L. in relation to the distribution of antifungal compounds, in: The Plant Cuticle, ( D. F. Cutler, K. L. Alvin, and G. E. Price, eds.), Academic Press, New York, pp. 331–340.

    Google Scholar 

  • Harper, J. W, and Powers, J. C., 1985, Reaction of serine proteases with substituted 3-alkoxy-4-chloroisocoumarines and 3-alkoxy-7-amino-4-chloroisocoumarines: New reactive mechanism based inhibitors, Biochemistry 24: 7200–7213.

    PubMed  CAS  Google Scholar 

  • Hashioka, Y., Ikegami, H., Horino, O., and Kamei, T., 1967, Fine structure of the rice blast. II. Electron micrographs of the initial infection, Res. Bull. Fac. Agric. Gifu Univ. 24: 78–90.

    Google Scholar 

  • Heath, M. C., 1987, Host vs. nonhost resistance, in: Molecular Strategies for Crop Protection, ( C.J. Arntzen and C. Ryan, eds.), Liss, New York, pp. 25–34.

    Google Scholar 

  • Heinen, W, 1960, Über den enzymatischen Cutin Abbau. I. Mitteilung: Nachweis eines “Cutinase” Systems, Acta Bot. Neerl. 9: 167–190.

    CAS  Google Scholar 

  • Heinen, W, and de Vries, H., 1966, Stages during the breakdown of plant cutin by soil microorganisms, Arch. Microbiol. 54: 331–338.

    CAS  Google Scholar 

  • Heintz, C., 1986, Infection mechanisms of grapevine powdery mildew (Oidium tuckeri): Comparative studies of the penetration process on artificial membranes and leaf epidermis, Vitis 25: 215–225.

    Google Scholar 

  • Hemmi, K., Harper, J., and Powers, J. C., 1985, Inhibition of human leukocyte elastase, cathepsin G, chymotrypsin A, and porcine pancreatic elastase with substituted isobenzofuranones and benzopyrandiones, Biochemistry 24: 1841–1848.

    PubMed  CAS  Google Scholar 

  • Hoch, H. C., and Staples, R. C., 1987, Structural and chemical changes among the rust fungi during appressorium development, Annu. Rev. Phytopathol. 25: 231–247.

    Google Scholar 

  • Holloway, P. J., 1982a, Structure and histochemistry of plant cuticular membranes: An overview, in: The Plant Cuticle, ( D. E Cutler, K. L. Alvin, and C. E. Price, eds.), Academic Press, New York, pp. 1–32.

    Google Scholar 

  • Holloway, P. J., 1982b, The chemical constitution of plant cuticles, in: The Plant Cuticle, ( D. F. Cutler, K. L. Alvin, and C. E. Price, eds.), Academic Press, New York, pp. 45–86.

    Google Scholar 

  • Howard, R. J., and Ferrari, M. A., 1989, Role of melanin in appressorium function, Exp. Mycol. 13: 403–418.

    CAS  Google Scholar 

  • Huang, J. S., 1986, Ultrastructure of bacterial penetrations in plants, Annu. Rev. Phytopathol. 24: 141–157.

    Google Scholar 

  • Inoue, S., Kato, T., Jordan, V. W. L., and Brent, K. J., 1987, Inhibition of appressorial adhesion of Pyricularia oryzae to barley leaves by fungicides, Pestic. Sci. 19: 145–152.

    CAS  Google Scholar 

  • Karjalainen, R., and Lounatmaa, K., 1986, Ultrastructure of penetration and colonization of wheat leaves by Septoria nodorum, Physiol. Mol. Plant Pathol. 29: 263–270.

    Google Scholar 

  • Kenn, J. P. R., and Hargreaves, J. A., 1983, A cytological study of the net blotch disease of barley caused by Pyrenophora teres, Physiol. Plant Pathol. 22: 321–329.

    Google Scholar 

  • Kolattukudy, P. E., 1980a, Biopolyester membranes of plants, Science 208: 990–1000.

    PubMed  CAS  Google Scholar 

  • Kolattukudy, P E., 1980b, Cutin, suberin and waxes, in: The Biochemistry of Plants, Volume 4, ( P. K. Stumpf, ed.), Academic Press, New York, pp. 571–645.

    Google Scholar 

  • Kolattukudy, P. E., 1981, Structure, biosynthesis, and biodegradation of cutin and suberin, Annu. Rev. Plant Physiol. 32: 539–567.

    CAS  Google Scholar 

  • Kolattukudy, P. E., 1984a, How do pathogenic fungi break the plant cuticular barrier? in: Infection Processes of Fungi, ( D. W. Roberts and J. R. Aist, eds.), The Rockefeller Foundation, New York, pp. 31–37.

    Google Scholar 

  • Kolattukudy, P. E., 1984b, Fungal penetration of defensive barriers of plants, in: Structure, Function, and Biosynthesis of Plant Cell Walls, ( W. M. Dugger and S. Bartnicki-Garcia, eds.), American Society of Plant Physiologists, Rockville, pp. 31–37.

    Google Scholar 

  • Kolattukudy, P. E., 1984e, Biochemistry and function of cutin and suberin, Can. J. Bot. 62: 2918–2933.

    CAS  Google Scholar 

  • Kolattukudy, P. E., 1984d, Cutinases from fungi and pollen, in: Lipases, ( B. Borgström and H. L. Brockman, eds.), Elsevier, Amsterdam, pp. 471–504.

    Google Scholar 

  • Kolattukudy, P. E., 1985, Enzymatic penetration of the plant cuticle by fungal pathogens, Annu. Rev. Phytopathol. 23: 223–250.

    CAS  Google Scholar 

  • Kolattukudy, P. E., 1987, Lipid-derived defensive polymers and waxes and their role in plant-microbe interaction, in: The Biochemistry of Plants, Volume 9, ( P. K. Stumpf, ed.), Academic Press, New York, pp. 291–314.

    Google Scholar 

  • Kolattukudy, P. E., and Crawford, M. S., 1987, The role of polymer degrading enzymes in fungal pathogenesis, in: Molecular Determinants of Plant Diseases, ( S. Nishimura, C. P. Vance, and N. Doke, eds.), Springer-Verlag, Berlin, pp. 75–96.

    Google Scholar 

  • Kolattukudy, P. E., and Espelie, K. E., 1985, Biosynthesis of cutin, suberin and associated waxes, in: Biosynthesis and Biodegradation of Wood Components, ( T Higuchi, ed.), Academic Press, New York, pp. 162–208

    Google Scholar 

  • Kolattukudy, P. E., and Köller, W, 1983, Fungal penetration of the first line defensive barriers of plants, in: Biochemical Plant Pathology, ( J. A. Callow, ed.), Wiley, New York, pp. 79–100.

    Google Scholar 

  • Kolattukudy, P. E., and Soliday, C. L., 1985, Effects of stress on the defensive barriers of plants, in: Cellular and Molecular Biology of Plant Stress, ( J. L. Key and T. Kosuge, eds.), Liss, New York, pp. 381–400.

    Google Scholar 

  • Kolattukudy, P. E., Espelie, K. E., and Soliday, C. L., 1981a, Hydrophobic layers attached to cell walls. Cutin, suberin and associated waxes, in: Plant Carbohydrates JI—Extracellular Carbohydrates, ( W. Tanner and F. A. Loewus, eds.), Springer-Verlag, Berlin, pp. 225–254.

    Google Scholar 

  • Kolattukudy, P E., Purdy, R. E., and Maiti, I. B., 1981b, Cutinases from fungi and pollen, Methods Enzymol. 71: 652–664.

    CAS  Google Scholar 

  • Kolattukudy, P. E., Ettinger, W. F, and Sebastian, J., I987a, Cuticular lipids in plant microbe interaction, in: The Metabolism, Structure, and Function of Plant Lipids, (P. K. Stumpf, J. B. Mudd and W. D. Nes, eds.), Plenum Press, New York, pp. 473–480.

    Google Scholar 

  • Kolattukudy, P. E., Soliday, C. L., Woloshuk, C. P., and Crawford, M.,1985, Molecular biology of the early events in the fungal penetration into plants, in: Molecular Genetics of Filamentous Fungi, (W. E. Timberlake, ed.), Liss, New York, pp. 421–438.

    Google Scholar 

  • Kolattukudy, P. E., Sebastian, J., Ettinger, W. F., and Crawford, M. S., 1987b, Cutinase and pectinase in host-pathogen and plant-bacterial interaction, in: Molecular Genetics of Plant-Microbe Interaction, ( D. P. S. Verma and N. Brisson, eds.), Nijhoff, The Hague, pp. 43–50.

    Google Scholar 

  • Kolattukudy, P. E., Crawford, M. S., Woloshuk, C. P., Ettinger, W. F., and Soliday, C. L., 1987e, The role of cutin, the plant cuticular hydroxy fatty acid polymer, in fungal interaction with plants, in: Ecology and Metabolism of Plant Lipids, (G. Fuller and W. D. Nes, eds.), American Chemical Society, Washington, D. C., pp. 152–175.

    Google Scholar 

  • Kolattukudy, P. E., Podila, G. K., Roberts, E., and Dickman, M. D., 1989, Gene expression resulting from the early signals in plant-fungus interaction, in: Molecular Biology of Plant-Pathogen Interactions, (B. Staskawicz, B. Ahlquist and 0. Yoder, eds.), Liss, New York, pp. 87–102.

    Google Scholar 

  • Köller, W., and Kolattukudy, P. E., 1982, Mechanism of action of cutinase: Chemical modification of the catalytic triad characteristic for serine hydrolases, Biochemistry 21: 3083–3090.

    PubMed  Google Scholar 

  • Köller, W, and Parker, D. M., 1989, Purification and characterization of cutinase from Venturia inaequalis, Phytopathology 79: 278–283.

    Google Scholar 

  • Köller, W., Allan, C. R., and Kolattukudy, P. E., 1982a, Role of cutinase and cell wall degrading enzymes in infection of Pisum sativum by Fusarium solani f. sp. pisi. Physiol. Plant Pathol. 20: 47–60.

    Google Scholar 

  • Köller, W., Allan, C. R., and Kolattukudy, P. E., 19826, Protection of Pisum sativum from Fusarium solani f.sp pisi by inhibition of cutinase with organophosphorous pesticides, Phytopathology 72: 1425–1430.

    Google Scholar 

  • Köller,W, Allan, C. R., and Kolattukudy, P. E., 1982e, Inhibition of cutinase and prevention of fungal penetration into plants by benomyl—A possible protective mode of action, Pestic. Biochem. Physiol. 18: 15–25.

    Google Scholar 

  • Kraut, J., 1977, Serine proteases: Structure and mechanism of catalysis, Annu. Rev. Biochem. 46: 331–358.

    PubMed  CAS  Google Scholar 

  • Kubicek: C. P., Panda, T., Schreferl-Kunar, G., Gruber, F., and Messner, R., 1987, O-linked but not N-linked glycosylation is necessary for the secretion of endoglucanases I and II by Trichoderma reesei, Can. J. Microbial. 33: 698–703.

    Google Scholar 

  • Kunoh, H., 1981, Early stages of infection process of Erysiphe graminis on barley and wheat, in: Microbial Ecology of the Phylloplane, ( J. P. Blakeman, ed.), Academic Press, New York, pp. 85–101.

    Google Scholar 

  • Kunoh, H., 1984, Cytological aspects of penetration of plant epidermis by fungi, in: Infection Processes of Fungi, ( D. W. Roberts and J. R. Aist, eds.), The Rockefeller Foundation, New York, pp. 137–146.

    Google Scholar 

  • Lin, T. S., and Kolattukudy, P. E., 1976, Evidence for novel linkages in a glycoprotein involving 3-hydrophenylalanine and ß-hydroxytyrosine, Biochem. Biophys. Res. Commun. 72: 243–250.

    PubMed  CAS  Google Scholar 

  • Lin, T. S., and Kolattukudy, P. E., 1977, Glucoronyl glycin, a novel N-terminus in a glycoprotein, Biochem. Biophys. Res. Commun. 75: 87–93.

    PubMed  CAS  Google Scholar 

  • Lin, T S., and Kolattukudy, P E., 1978, Induction of a polyester hydrolase (cutinase) by low levels of cutin monomers in Fusarium solani f. sp. pisi, J. Bacterial. 133: 942–951.

    CAS  Google Scholar 

  • Lin, T. S., and Kolattukudy, P E., 1980a, Structural studies on cutinase, a glycoprotein containing novel amino acids and glucoronic acid amide at the N-terminus, Eur. J. Biochem. 106: 341–351.

    PubMed  CAS  Google Scholar 

  • Lin, T. S., and Kolattukudy, P. E., 1980b, Isolation and characterization of a cuticular polyester (cutin) hydrolyzing enzyme from phytopathogenic fungi, Physiol. Plant Pathol. 17: 1–15.

    CAS  Google Scholar 

  • Linskens, H. F, and Haage, P., 1963, Cutinase-Nachwies in phytopathogenen Pilzen, Phytopathol. Z. 48: 306–311.

    Google Scholar 

  • Littlefield, L. J., and Heath, M. C., 1979, Ultrastructure of Rust Fungi, Academic Press, New York.

    Google Scholar 

  • McBride, R. P, 1972, Larch leaf waxes utilized by Sporobolomyces roseus in situ, Trans. Br. Mycol. Soc. 58: 329–331.

    Google Scholar 

  • McKeen, W. E., 1974, Mode of penetration of epidermal cell walls of Vicia faba by Botrytis cinerea, Phytopathology 64: 461–467.

    Google Scholar 

  • McKeen, W. E., and Rimmer, S. R., 1973, Initial penetration process in powdery mildew infection of susceptible barley leaves, Phytopathology 63: 1049–1053.

    Google Scholar 

  • McKeen,W. E., and Svircev, A. M., 1981, Early development of Peronospora tabacina in the Nicotiana tabacum leaf, Can. J. Plant Pathol. 3:145–158.

    Google Scholar 

  • Macko, V., 1981, Inhibitors and stimulants of spore germination and infection structure formation in fungi, in: The Fungal Spore: Morphogenetic Controls, ( G. Tirrian and H. R. Hohl, eds.), Academic Press, New York, pp. 565–584.

    Google Scholar 

  • MacNamara, O. C., and Dickinson, C. H., 1981, Microbial degradation of plant cuticle, in: Microbial Ecology of the Phylloplane, ( J. P Blakeman, ed.), Academic Press, New York, ppg. 455–473.

    Google Scholar 

  • Maiti, I. B., and Kolattukudy, P E., 1979, Prevention of fungal infection of plants by specific inhibitors of cutinase, Science 205: 507–508.

    PubMed  CAS  Google Scholar 

  • Martin, T. J., 1964, Role of the cuticle in the defense against plant diseases, Annu. Rev. Phytopathol. 2: 81–100.

    Google Scholar 

  • Martin, T. J., and Juniper, B. E., 1970, The Cuticles of Plants, St. Martin’s Press, New York.

    Google Scholar 

  • Matsuura, K. 1986, Scanning electron microscopy of the infection process of Rhizoctonia solani in leaf sheaths of rice plants, Phytopathology 76: 811–814.

    Google Scholar 

  • Maurer, F, Sommer, H., Killer, W, Brandes, W., and Reinecke, P., 1986, Preparation of pyridyl phosphate esters as agrochemical fungicides, Chem. Abstr. 107: 231–426.

    Google Scholar 

  • Moorman, A. R., and Abeles, R. H., 1982, A new class of serine protease inactivators based on isatoic anhydride, J. Am. Chem. Soc. 104: 6785–6786.

    CAS  Google Scholar 

  • Moreau, R. A., and Seibles, T. S., 1985, Production of extracellular enzymes by germinating cysts of Phytophthora infestans, Can. J. Bot. 63: 1811–1816.

    CAS  Google Scholar 

  • Morris, C. E., and Rouse, D. I. 1985, Role of nutrients in regulating epiphytic bacterial populations, in: Biological Control on the Phylloplane, (C. E. Windels and S. E. Lindow, eds.), American Phytopathological Society, St. Paul, pp. 63–82.

    Google Scholar 

  • Naggert, J., Witkowski, A., Mikkelsen, J., and Smith, S., 1988, Molecular cloning and sequencing of a cDNA encoding the thioesterase domain of the rat fatty acid synthetase, J. Biol. Chem. 263: 1146–1150.

    PubMed  CAS  Google Scholar 

  • Nelson, P. E., ‘Ibussoun, T A. and Cook, R. J., 1981, Fusarium: Diseases, Biology, and Taxonomy, The Pennsylvania State University Press, University Park.

    Google Scholar 

  • Nicholson, R. L., and Manes, B. C., 1980, Survival of Colletotrichum graminicola: Importance of the spore matrix, Phytopathology, 70: 255–261.

    CAS  Google Scholar 

  • Nicholson, R.L., Kuc, J., and Williams, E. B., 1972, Histochemical demonstration of transitory esterase activity in Venturia inaequalis, Phytopathology 62: 1242–1247.

    CAS  Google Scholar 

  • Nicholson, R. L., Yoshioka, H., Yamaoka, N., and Kunoh, H., 1988, Preparation of infection court by Erysiphe graminis. II. Release of esterase enzyme from conidia in response to a contact stimulus, Exp. Mycol. 12: 336–349.

    CAS  Google Scholar 

  • Nusbaum, C. J., and Keitt, G. W, 1938, A cytological study of host-parasite relations of Venturia inaequalis on apple leaves, J. Agric. Res. 66: 595–618.

    Google Scholar 

  • Oakeshott, J. G., Collet, C., Phillis, R. W, Nielsen, K. M., Russell, R. J., Chambers, G. K., Ross, V., and Richmond, R. C., 1987, Molecular cloning and characterization of esterase-6, a serine hydrolase from Drosophila, Proc. Nad. Acad. Sci. USA 84: 3359–3363.

    CAS  Google Scholar 

  • O’Connell, R. J. O., Bailey, J. A., and Richmond, D. V, 1985, Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum, Physiol. Plant Pathol. 27: 75–98.

    Google Scholar 

  • Ogoshi, A., 1987, Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn, Annu. Rev. Phytopathol. 25: 125–143.

    Google Scholar 

  • Parmeter, J. R. (ed.), 1970, Rhizoctonia solani: Biology and Pathology, University of California Press, Berkeley.

    Google Scholar 

  • Parry, D. W, and Pegg, G. F., 1985, Surface colonization, penetration and growth of three Fusarium species in lucerne, Trans. Br. Mycol. Soc. 85: 495–500.

    Google Scholar 

  • Paus, F., and Raa, J., 1973, An electron microscope study of infection and disease development in cucumber hypocotyls inoculated with Cladosporium cucumerinum, Physiol. Plant Pathol. 3: 461–464.

    Google Scholar 

  • Podila, G. K., Dickman, M. B., and Kolattukudy, P. E., 1988, ‘franscriptional activation of a cutinase gene in isolated fungal nuclei by plant cutin monomers, Science 242: 922–925.

    Google Scholar 

  • Polgar, L., 1987, Structure and function of serine proteases, in: Hydrolytic Enzymes, ( A. Neuberger and K. Brocklehurst, eds.), Elsevier, Amsterdam, pp. 159–200.

    Google Scholar 

  • Poulose, A. J., Rogers, L., Cheesebrough, T. M., and Kolattukudy, P E., 1985, Cloning and sequencing of the cDNA for S-acyl fatty acid synthase thioesterase from the uropygial gland of mallard duck, J. Biol. Chem. 260: 15953–15958.

    PubMed  CAS  Google Scholar 

  • Preece, T. F, Barnes, G., and Baylay, J. W., 1967, Junctions between epidermal cells as sites for appressorium formation by plant pathogenic fungi, Plant Pathol. 16: 117–118.

    Google Scholar 

  • Price, C. E., 1982, A review of the factors influencing the penetration of pesticides through plant leaves, in: The Plant Cuticle, ( D. E Cutler, K. L. Alvin, and G. E. Price, eds.), Academic Press, New York, pp. 237–252.

    Google Scholar 

  • Purdy, R. E., and Kolattukudy, P. E., 1973, Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyne from Fusarium solani f. sp. pisi: Isolation and some properties of the enzyme, Arch. Biochem. Biophys. 159: 61–69.

    PubMed  CAS  Google Scholar 

  • Purdy, R. E., and Kolattukudy, P. E., 1975a, Hydrolysis of plant cuticle by plant pathogens. Purification, amino acid composition, and molecular weight of two isozymes of cutinase and a nonspecific esterase from Fusarium solani f. pisi, Biochemistry 14: 2824–2831.

    PubMed  CAS  Google Scholar 

  • Purdy, R. E., and Kolattukudy, P. E., 1975b, Hydrolysis of plant cuticle by plant pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani f. pisi, Biochemistry 14: 2832–2840.

    PubMed  CAS  Google Scholar 

  • Randhawa, Z. I., and Smith, S., 1987, Complete amino acid sequence of the medium-chain S-aryl fatty acid synthase thio ester hydrolase from rat mammary gland, Biochemistry 26: 1365–1373.

    PubMed  CAS  Google Scholar 

  • Riederer, M., and Schönherr, J., 1988, Development of plant cuticles: Fine structure and cutin composition of Clivia miniata Reg. leaves, Planta 174: 127–138.

    CAS  Google Scholar 

  • Rijkenberg, F. H. J., De Leeuw, G. T. N., and Verhoeff, K., 1980, Light and electron microscopy studies on the infection of tomato fruits by Botrytis cinerea, Can. J. Bot. 58: 1394–1404.

    Google Scholar 

  • Ruinen, J. 1963, The phyllosphere. II. Yeasts from the phyllosphere of tropical foliage, Antonie van Leeuwenhoek, J. Microbiol. Serol. 29: 425–438.

    CAS  Google Scholar 

  • Ruinen, J., 1966, The phyllosphere. IV. Cuticle decomposition by microorganisms in the phyllosphere, Ann. Inst. Pateur. Paris 111: 342–346.

    Google Scholar 

  • Salinas, J., Warnaar, F., and Verhoeff, K., 1986, Production of cutin hydrolyzing enzymes by Botrytis cinerea in vitro, J. Phytopathol. 116: 299–307.

    CAS  Google Scholar 

  • Sargent, C., and Gay, J. L., 1977, Barley epidermal apoplast structure and modification by powdery mildew contact. Physiol. Plant Pathol. 11: 195–205.

    Google Scholar 

  • Schönherr, J., 1982, Resistance of plant surfaces to water loss, in: Physiological Plant Ecology II-Water Relations and Carbon Assimilation, ( O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler, eds.), Springer-Verlag, Berlin, pp. 153–179.

    Google Scholar 

  • Schumacher, M., Camp, S., Maulet, Y., Newton, M., MacPhee-Quigley, K., Taylor, S. S., Friedmann, T., and Taylor, P, 1986, Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence, Nature 319: 407–409.

    PubMed  CAS  Google Scholar 

  • Schwinn, F., and Geissbühler, H., 1986, Towards a more rational approach to fungicide design, Crop Pro. 5: 33–40.

    Google Scholar 

  • Sebastian, I., Chandra, A. K., and Kolattukudy, P. E., 1987, Discovery of a cutinase-producing Pseudomonas sp. cohabiting with an apparently nitrogen-fixing Corynebacterium sp. in the phyllosphere, J. Bacteriol. 169: 131–136.

    PubMed  CAS  Google Scholar 

  • Shaykh, M., Soliday, C., and Kolattukudy, P. E., 1977, Proof for the production of cutinase by Fusarium solani f. pisi during the penetration into its host, Pisum sativum, Plant Physiol. 60: 170–172.

    PubMed  CAS  Google Scholar 

  • Shishiyama, J., Araki, F., and Akai, S., 1970, Studies on cutin esterase H. Characteristics of cutin-esterase from Botrytis cinerea and its activity on tomato-cutin, Plant Cell Physiol. 11: 937–945.

    CAS  Google Scholar 

  • Sisler, H. D., 1986, Control of fungal diseases by compounds acting as antipenetrants, Crop Prot. 5: 306–313.

    CAS  Google Scholar 

  • Smereka, K. J., MacHardy, W. E., and Kausch, A. P., 1987, Cellular differentiation in Venturia inaequalis ascospores during germination and penetration of apple leaves, Can. J. Bot. 65: 2549–2561.

    Google Scholar 

  • Smereka, K. J., Kausch, A. P. and MacHardy, W. E., 1988, Intracellular junctional structures in germinating ascospores of Venturia inaequalis, Protoplasma 142: 1–4.

    Google Scholar 

  • Soliday, C. L., and Kolattukudy, P. E., 1976, Isolation and characterization of a cutinase from Fusarium roseum culmorum and its immunological comparison with cutinases from F. solani pisi, Arch. Biochem. Biophys. 176: 334–343.

    PubMed  CAS  Google Scholar 

  • Soliday, C. L., FlF urkey, W. H., Okita, T. W., and Kolattukudy, P. E., 1984, Cloning and structure determination of cDNA for cutinase, an enzyme involved in fungal penetration of plants, Proc. Natl. Acad. Sci. USA 81: 3939–3943.

    PubMed  CAS  Google Scholar 

  • Soliday, C. L., Dickman, M. B., and Kolattukudy, R E., 1989, Structure of the cutinase gene and detection of promoter activity in the 5’-flanking region by fungal transformation, J. Bacteriol. 171: 1942–1951.

    PubMed  CAS  Google Scholar 

  • Sparapano, L., and Graniti, A., 1977, Cutin degradation by two scab fungi, Spilocaea olegania (Cast.) Hugh. and Venturia inaequalis, in: Current Topics in Plant Pathology, ( Z. Kiraly, ed.), Akademiai Kiado, Budapest, ppg. 117–138.

    Google Scholar 

  • Staub, T., Dahmen, H., and Schwinn, F. J., 1974, Light-and scanning electron microscopy of cucumber and barley powdery mildew on host and nonhost plants, Phytopathology 64: 264–272.

    Google Scholar 

  • Tanabe, K., Nishimura, S., and Kohmoto, K., 1988a, Cutinase production by Alternaria alternata Japanese pear pathotype and its role in pathogenicity, Annu. Phytopathol. Soc. Jpn. 54: 483–492.

    CAS  Google Scholar 

  • Tanabe, K., Nishimura, S., and Kohmoto, K., 1988b, Pathogenicity of cutinase-and pectic enzymes-deficient mutants of Alternaria alternata Japanese pear pathotype, Annu. Phytopathol. Soc. Jpn. 54: 552–555.

    CAS  Google Scholar 

  • Tarique, V-N., and Jeffries, P., 1986, Ultrastructure of penetration of Phaseolus spp. by Sclerotinia sclerotiorum, Can. J. Bot. 64: 2909–2915.

    Google Scholar 

  • Torique, V.-N., and Jeffries, P, 1987, Cytochemical localization of lipolytic enzyme activity during the penetration of host tissues by Sclerotinia sclerotiorum, Physiol. Mol. Plant Pathol. 30: 77–91.

    Google Scholar 

  • Tewari, J. P, 1986, Subcuticular growth of Alternaria brassicae in rapeseed, Can. J. Bot. 64:1227–1231. Toussoun, T. A., Nash, S. M., and Snyder, W. C., 1960, The effect of nitrogen sources and glucose on the pathogenesis of Fusarium solani f. phaseoli, Phytopathology 50: 137–140.

    Google Scholar 

  • Bail, F., and KSller, W., 1990, Diversity of cutinases from plant pathologenic fungi: Evidence for a relationship between enzyme properties and tissue specificity, Physiol. Molec. Plant Pathol. (in press).

    Google Scholar 

  • Trion, E. J. 1981, Natural regulators of fungal development, in: Plant Disease Control, ( R. C. Staples and G. H. ibenissen, eds.), Wiley, New York, pp. 85–102.

    Google Scholar 

  • Tsuneda, A., and Skoropad, W. P., 1978, Behavior of Alternaria brassicae and its mycoparasite Nectria inventa on intact and on excised leaves of rapeseed, Can. J. Bot. 56: 1333–1340.

    Google Scholar 

  • Valsangiacomo, C., and Gessler, C., 1988, Role of the cuticular membrane in ontogenic and Vf-resistance of apple leaves against Venturia inaequalis, Phytopathology 78: 1066–1068.

    Google Scholar 

  • Van den Ende, G., and Linskens, H. F., 1974, Cutinolytic enzymes in relation to pathogenesis, Annu. Rev. Phytopathol. 12: 247–258.

    Google Scholar 

  • VanEtten, H. D., Matthews, D. E., and Mackintosh, S. F, 1987, Adaption of pathogenic fungi to toxic barriers of plants, in: Molecular Strategies for Crop Protection, (C. J. Amtzen and C. Ryan, eds.), Liss, New York, pp. 59–70.

    Google Scholar 

  • Verhoeff, K., 1980, The infection process and host-pathogen interactions, in: The Biology of Botrytis, ( J. R. Coley-Smith, K. Verhoeff, and W. R. Javaris, eds.), Academic Press, New York, pp. 153–179.

    Google Scholar 

  • Wiltshire, S. R, 1915, Infection and immunity studies on the apple and pear scab fungi, Ann. Appl. Biol. 1: 335–350.

    Google Scholar 

  • Wolkow, P. M., Sisler, H. D., and Vigil, E. L., 1983, Effect of inhibitors of melanin biosynthesis on structure and function of appressoria of Collectotrichum lindemuthianum, Physiol. Plant Pathol. 23: 55–71.

    CAS  Google Scholar 

  • Woloshuk, C. P, and Kolattukudy, P. E., 1986, Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi, Proc. Natl. Acad. Sci. USA 83: 1704–1708.

    PubMed  CAS  Google Scholar 

  • Woloshuk, C. P, Sisler, H. D., and Vigil, E. L., 1983, Action of the antipenetrant, tricyclazole, on appressoria of Pyricularia oryzae, Physiol. Plant Pathol. 22: 245–259.

    CAS  Google Scholar 

  • Wood, R. K. S., 1960, Chemical ability to breach the host barriers, in: Plant Pathology—An Advanced 7teatise, Volume 2, ( J. G. Horsfall and A. E. Dimond, eds.), Academic Press, New York, pp. 232–272.

    Google Scholar 

  • Zinkernagel, V, Riess, F., Wendland, M., and Bartscherer, H.-C., 1988, Infektionsstrukturen von Septoria nodorum in Blättern anfälliger Weizensorten, Z. Pflanzenkr. Pflanzenschutz 95: 169–175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Köller, W. (1991). The Plant Cuticle. In: Cole, G.T., Hoch, H.C. (eds) The Fungal Spore and Disease Initiation in Plants and Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2635-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2635-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2637-1

  • Online ISBN: 978-1-4899-2635-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics