Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 289))

Abstract

To assess whether the dipeptide N-ε-(γ-L-glutamyl)-L-lyslne (glutamyl-lysine) can serve as a nutritional source of lysine, we compared the growth of mice fed (a) an amino acid diet in which lysine was replaced by six dietary levels of glutamyl-lysine; (b) wheat gluten diets fortified with lysine; (c) a wheat bread-based diet (10% protein) supplemented before feeding with lysine or glutamyl-lysine (0, 0.75, 1.50, 2.25, and 3% lysine HCl-equivalent in the final diet), not co-baked and (d) bread diets co-baked with these levels of lysine or glutamyl-lysine. With the amino acid diet, the relative growth response to glutamyl-lysine was about half that of lysine. The effect of added lysine on the nutritional improvement of wheat gluten depended on both lysine and gluten concentrations in the diet. With 10 and 15% gluten, 0.37% lysine HC1 produced a marked increase in weight gain. Further increase in lysine HC1 to 0.75% proved deterimental to weight gain. Lysine HC1 addition improved growth at 20 and 25% gluten in the diet and did not prove detrimental at 0.75%. For whole bread, glutamyl-lysine served nearly as well as lysine to improve weight gain. The nutritive value of bread crust fortified or not was markedly less than that of crumb or whole bread. Other data showed that lysine or glutamyl-lysine at the highest level of fortification, 0.3%, improved the protein quality (PER) of crumb over that of either crust or whole bread, indicating a possible greater availability of the second-limiting amino acid, threonine, in crumb. These data and additional metabolic studies with U-14 -C glutamyl-lysine suggest that glutamyl-lysine, co-baked or not, is digested in the kidneys and utilized in vivo as a source of lysine; it and related peptides merit further study as a sources of lysine in low-lysine foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, J.M., and John, A.M. Amino acid requiremnts of growing mice: arginine, lysine, tryptophan and phenylalanine. J. Nutr., 111, 525–530. 1981.

    CAS  Google Scholar 

  • Betschart, A.A. Improving protein quality of bread-nutritional benefits and realities. In “Nutritional Improvement of Food and Feed Proteins-Adv. Exp. Med. Biol. 105”, M. Friedman, Ed., Plenum, New York, pp 703–734. 1978.

    Chapter  Google Scholar 

  • Bjorck, I., Noguchi, A., Asp, N.G., Cheftel, J., and Dahlqvist, A. Protein nutritional value of a biscuit processed by extrusion cooking: effects on available lysine. J. Agric. Food Chem., 31, 488–492. 1983.

    Article  CAS  Google Scholar 

  • Cavins, J.F., and Friedman, M. New amino acids derived from reactions of ε-amino groups in proteins with α, β-unsaturated compounds. Biochemistry 6, 3766–3770. 1967.

    Article  CAS  Google Scholar 

  • Cavins, J.F., and Friedman, M. Automatic integration and computation of amino acid analyses. Cereal Chem. 45, 172–176. 1968.

    CAS  Google Scholar 

  • Chan, E.L., and Nakai, S. Comparison of browning in wheat glutens enriched by covalent attachment and addition of lysine. J. Agric. Food Chem., 29, 1200–1205. 1981.

    Article  Google Scholar 

  • Chan, E.L., Helbig, N., Holbek, E., Chan, S., and Nakai, S. Covalent attachment of lysine to wheat gluten for nutritional improvement. J. Agic. Food Chem., 27, 877–882. 1979.

    Article  Google Scholar 

  • Chu, S.H., and Hegsted, D.M. Adaptive response of lysine and threonine degrading enoymes in adult rats. J. Nutr., 106, 1089–1096. 1976.

    CAS  Google Scholar 

  • Cossack, Z.T., and Weber, C.W. A proposed bioassay for evaluating protein quality using rats and mice. Nutr. Rep. Int., 28, 203–218. 1983

    Google Scholar 

  • De Weck-Gaudard, D., Liardon, R., and Finot, P.A. Stereomeric composition of urinary lysinoalanine after ingestion of free or protein-bound lysinoalanine in rats. J. Agric. Food Chem., 36, 721–725. 1988.

    Google Scholar 

  • Eskins, K., and Friedman, M. Solvent effects during the photochemistry of gluten-proteins. Photochem. Photobiol. 12, 245–247. 1970a.

    Article  CAS  Google Scholar 

  • Eskins, K., and Friedman, M. Graft photopolymerization of styrene to wheat gluten proteins in dimethyl sulfoxide. J. Macromol. Sci. A4, 947–956. 1970b.

    Google Scholar 

  • Finley, J.W. and Friedman, M. Chemical methods for available lysine. Cereal Chemistry 50, 101–105. 1973.

    CAS  Google Scholar 

  • Fink, M.L., Chung, S.I., and Folk, J.E. γ-Giutamylamine cyclotransferase: specificity toward ε-(L-γ-glutamyl)-L-1ysine and related compounds. Proc. Natl. Acad Sci. USA. 77, 4564–4568. 1980.

    Article  CAS  Google Scholar 

  • Finney, D.J. Statistical Methods in Biological Assay. 3rd Ed., McMillan: New York, p 508. 1978.

    Google Scholar 

  • Finot, P.A., Mottu, F., Bujard, E., and Mauron, J. N-substituted lysines as a source of lysine in nutrition. In “Nutritional Improvement of Food and Feed Proteins”, M. Friedman, Ed., Plenum, New York, pp 549–569. 1978.

    Chapter  Google Scholar 

  • Friedman, M. Reactions of cereal proteins with vinyl compound. In “Industrial Uses of Cereal Grains”, Y. Pomeranz, Editor, American Association of Cereal Chemists, Minneapolis, MN, PP. 237–251. 1973.

    Google Scholar 

  • Friedman, M. (Editor). “Protein Nutritional Quality of Foods and Feeds”, Marcel Dekker, New York. 2 Volumes. 1975.

    Google Scholar 

  • Friedman, M. Effect of lysine modification on chemical, physical, nutritive, and functional properties of proteins. In “Food Proteins”, J.R. Whitaker and S. Tannenbaum, Eds., Avi, Westport, CT, pp. 446–483. 1977a.

    Google Scholar 

  • Friedman, M. Crosslinking amino acids-stereochemistry and nomenclature. In “Protein Crosslinklng: Nutritional and Medical Consequences”-Adv. Exp. Med. Biol. 86B, M. Friedman, Ed., Plenum, New York, pp. 1–27. 1977b.

    Chapter  Google Scholar 

  • Friedman, M. (Editor). “Protein Crosslinklng: Nutritional and Medical Consequences”, Plenum Press, New York, 1977c.

    Google Scholar 

  • Friedman, M. (Editor). “Protein Crosslinking: Biochemical and Molecular Aspects”, Plenum Press, New York, 1977d.

    Google Scholar 

  • Friedman, M. Wheat gluten-alkali reactions. In “Proceedings of the 10th National Conference on Wheat Utilization Research”, U.S. Department of Agriculture, Science and Education Administration, Western Regional Research Center, Berkeley, CA, ARM-W-4, pp. 81–100. 1978a.

    Google Scholar 

  • Friedman, M. (Editor). “Nutritional Improvement of Food and Feed Proteins”, Plenum Press, New York, 1978b.

    Google Scholar 

  • Friedman, M. Alkali-induced lysinoalanine formation in structurally different proteins. In “Protein Structure Related to Functionality”, A-Pour-El, Ed., ACS Symposium Series, Washington, D.C. 92, 225–235. 1979.

    Chapter  Google Scholar 

  • Friedman, M. Chemically reactive and unreactive lysine as an index of browning. Diabetes, 31(3), 5–14. 1982.

    Google Scholar 

  • Friedman, M. (Editor). “Absorption and Utilization of Amino Acids”, CRC Press, Boca Raton, Florida. 3 Volumes. 1989.

    Google Scholar 

  • Friedman, M., and Finley, J. W. Vinyl compounds as reagents for determining available lysine in proteins. In “Protein Nutritional Quality of Foods and Feeds”, Marcel Dekker, New York, Part 1, pp. 503–520. 1975.

    Google Scholar 

  • Friedman, M., and Gumbmann, M.R. Bloavallability of some lysine derivatives in mice. J. Nutr., 111, 1362–1369. 1981.

    CAS  Google Scholar 

  • Friedman, M., and Gumbmann, M.R. Nutritional value and safety of methionine derivatives, isomeric dipeptides and hydroxy analogs in mice. J. Nutr., 118. 388–397. 1988.

    CAS  Google Scholar 

  • Friedman, M., Krull, L.H., and Cavins, J.F. The Chromatographic determination of cysteine and half-cystine residues in proteins as S-ß-(4-pyridylethyl)-L-cysteine. J. Biol. Chem. 245, 3868–3871. 1970.

    CAS  Google Scholar 

  • Friedman, M., Noma, A.T., and Wagner, J.R. Ion-exchange chromatography of sulfur amino acids on a single-column amino acid analyzer. Anal. Biochem., 98, 293–304. 1979.

    Article  CAS  Google Scholar 

  • Friedman, M., Gumbmann, M.R., and Savoie, L. The nutritional value of lysinoaianine as a source of lysine for mice. Nutr. Rep. Int., 26, 939–947. 1982.

    Google Scholar 

  • Friedman, M., Gumbmann, M.R., and Masters, P.M. Protein-alkali reactions: chemistry, toxicology, and nutritional consequences. In “Nutritional and Toxicological Aspects of Food Safety-Adv. Exp. Med. Biol. 177”, M. Friedman, Ed., Plenum, New York, pp. 367–412. 1984a.

    Chapter  Google Scholar 

  • Friedman, M., Pang, J., and Smith, G.A. Ninhydrin-reactive lysine in food proteins. J. Food Sci. 49, 10–13. 1984b

    Article  CAS  Google Scholar 

  • Friedman, M., Gumbmann, M.R., and Ziderman, I.I. Nutritional value and safety in mice of proteins and their admixtures with carbohydrates and vitamin C. J. Nutr., 117. 508–518. 1987.

    CAS  Google Scholar 

  • Friedman, M., Gumbmann, M.R., and Brandon, D.L. Nutritonal, toxicological, and immunological consequences of food processing. Frontiers Gastsrointestinal Research 14, 79–90. 1988.

    CAS  Google Scholar 

  • Friedman, M., Wilson, R.W., and Ziderman, I.I. Mutagen formation in heated wheat gluten, carbohydrates, and gluten/carbohydrate blends. J. Agric. Food Chem., 38. 1019–1028. 1990.

    Article  CAS  Google Scholar 

  • Geervani, P., and Devi, P.Y. Effect of different heat treatments on losses of lysine in processed products prepared from unfortified flour and flour fortified with lysine. Nutr. Rep. Int., 33, 961–966. 1986.

    CAS  Google Scholar 

  • Gumbmann, M.R., Friedman, M., and Smith, G.A. The nutritional values and digestibilities of heat damaged casein and casein-carbohydrate mixtures. Nutr. Rep. Int., 28, 355–361. 1983.

    Google Scholar 

  • Hegsted, D.M. Protein quality and its determination. In “Food Proteins”, J.R. Whitaker, S.R. Tannenbaum, Eds., AVI, Westport, CT, pp. 347–362. 1977.

    Google Scholar 

  • Hurrell, R.R., and Carpenter, K.J. Nutritional significance of cross-link formation during food processing. Adv. Exp. Med. Biol., 86B, 225–237. 1977.

    Article  CAS  Google Scholar 

  • Ikura, K., Okumura, K., Yoshikawa, M., Sasaki, R., and Chiba, H. Incorporation of lysyldipeptides into food protein by transglutaminase. Agric. Biol. Chem., 49, 1877–1878. 1985.

    Article  CAS  Google Scholar 

  • Iwami, K., and Yasucnoto, K. Amine-binding capacities of food proteins in transgiutaminase reaction and digestibility of wheat gliadin with c-attached lysine. J. Sci. Food Agric. 37, 495–503. 1986.

    Article  CAS  Google Scholar 

  • Jansen, R.G. Amino acid fortification. In “New Protein Foods”, A.M. Altschul and H.L. Wilcke, Eds., Academic Press, New York, Vo. 4, pp. 161–204. 1981.

    Google Scholar 

  • Johnson, V.A., and Mattern, P.J. Improvement of wheat protein quality and uantity by breeding. In “Nutritional Improvement of Food and Feed Proteins-Adv. Exp. Med. Biol. 105” M. Friedman, Ed., Plenum, New York, pp. 301–316. 1978.

    Chapter  Google Scholar 

  • Khan-Siddiqui, K. Lysine-carnitine conversion in rat and man. In “Absorption and Utilization of Amino Acids”, M. Friedman, Ed., CRC, Boca Raton, FL, Vol. 2, pp 41–57. 1989.

    Google Scholar 

  • Kritchevsky, D.A. Dietary protein in atherosclerosis. In “Absorption and Utilization of Amino Acids”, M. Friedman, Ed., CRC, Boca Raton, FL, Vol. 2, pp 235–245. 1989.

    Google Scholar 

  • Krull, L.H., and Friedman, M. Anionic polymerization of methyl acrylate to protein functional groups. J. Polym. Sci. A-1, 5, 2535–2546. 1967.

    Article  CAS  Google Scholar 

  • Kurth, L., and Rogers, P.J. Transglutaminase catalyzed cross-linking of myosin to soya protein, casein and gluten. J. Food Sci., 49, 573–576. 1984.

    Article  CAS  Google Scholar 

  • Liardon, R., Friedman, M., and Phillippossian, G. Racemization kinetics of free-and protein-bound lysinoalanine (LAL) in strong acid media. Isomeric composition of protein-bound LAL. J. Agric. Food Chem. 38, 1990, submitted.

    Google Scholar 

  • Loewy, A.G. The N-ε-(γ-glutamic) lysine cross-link: method of analysis, occurrence in extracellular and cellular proteins. Methods Enzvmol., 107. 241–257. 1984.

    Article  CAS  Google Scholar 

  • Lougnon, L., and Kiener, T. Biological utilization of basic amino acids and cations. In “Absorption and Utilization of Amino Acids”, M. Friedman, Ed., CRC, Boca Raton, FL, Vol. 2, pp 1–24. 1989.

    Google Scholar 

  • Menefee, M., and Friedman, M. Estimation of structural components of abnormal hair from amino acid analyses. J. Protein Chem. 4, 333–341. 1985.

    Article  CAS  Google Scholar 

  • Milner, J.A. Arginine: a dietary modifier of ammonia detoxification and pyrimidine biosynthesis. In “Absorption and Utilization of Amino Acids”, M. Friedman, Ed., CRC, Boca Raton, FL, Vol. 2, pp. 26–40. 1989.

    Google Scholar 

  • Motoki, M., and Nio, N. Crosslinking between different food proteins by transglutaminase. J. Food Sci., 48, 561–566. 1983.

    Article  CAS  Google Scholar 

  • Otterburn, M.S. Protein crosslinking. In “Protein Quality and the Effects of Processing”, R.D. Phillips, J.W. Finley, Eds., Marcel Oekker, New York, pp. 247–261. 1989.

    Google Scholar 

  • Otterburn, M., Healy, M., and Sinclair, W. The formation, isolation, and maintenance and growth. In “Absorption and Utilization of Amino Acids”, M. Friedman, Ed., CRC, Boca Raton, FL., Vol. 1, pp. 15–30. 1989.

    Google Scholar 

  • Owens, F.N., and Pettigrew, O.E. Subdividing amino acid requirements for maintenance and growth. In “Absorption and Utilization of Amino Acids”, M. Friedman, Ed., CRC, Boca Raton, FL., Vol 1, pp. 15–30. 1989.

    Google Scholar 

  • Pearce, K.N., Karahalios, D., and Friedman, M. Ninhydrin assay for proteolysis in ripening cheese. J. Food Sci. 52, 432–435. 1988.

    Article  Google Scholar 

  • Raczynski, G., Snochowski, M., and Buraczewski, S. Metabolism of ε-(γ-L-glutamyl)-L-lysine in the rat. Br. J. Nutr., 34. 291–296. 1975.

    CAS  Google Scholar 

  • Reichl, J.R. Absorption and metabolism of amino acids studies in vitro, in. vivo, and with computer simulations. In “Absorption and Utilization of Amino Acids”, M. Friedman, Ed., CRC, Boca Raton, FL., Vol. 1, pp. 93–156. 1989.

    Google Scholar 

  • Sanchez, A., and Hubbard, R.W. Dietary protein modulation and serum cholesterol: the amino acid connection. In “Absorption and Utilization of Amino Acids”, M. Friedman, Ed., CRC, Boca Raton, FL, Vol. 2, pp. 247–273. 1989

    Google Scholar 

  • Sarwar, G., and Paquet, A. Availability of amino acids in some tripeptides and derivatives present in dietary proteins. In “Absorption and Utilization of Amino Acids”, M. Friedman, CRC, Boca Raton, FL, Volume 2, pp. 147–154. 1989.

    Google Scholar 

  • Sarwar, G., Christensen, D. A., Finlayson, A. J., Friedman, M., Hackler, L. R., Mackenzie, S. L., Pellet, P. L., and Tkachuk, R. Intra-and inter-laboratory variation in amino acid analysis. J. Food Sci., 48. 526–531. 1983.

    Article  CAS  Google Scholar 

  • Sarwar, G., Blair, R., Friedman, M., Gumbmann, M. R., Hackler, L. R., Pelletl, P. L., and Smith, T. L. Inter-and intra laboratory variability in rat growth assays for estimating protein quality in foods. J. Assoc. Off. Anal. Chem. 67, 976–981. 1984.

    CAS  Google Scholar 

  • Sarwar, G., Blair, R., Friedman, M., Gumbmann, M. R., Hackler, L. R., Pellett, P. L., and Smith, T. K. Comparison of interlaboratory variation in amino acid analysis and rat growth assays for evaluating protein quality. J. Assoc. Off. Anal. Chem., 68, 52–56. 1985.

    CAS  Google Scholar 

  • SAS. SAS/STAT Guide for Personal Computers; 6th Edition, SAS Institute: Cary, NC, 1028 p. 1987.

    Google Scholar 

  • Scharrer, E. Regulation of intestinal amino acid transport. In “Absorption and Utilization of Amino Acids”, M. Friedman, Ed., CRC, Boca Raton, FL, Volume 1, pp. 57–68. 1989.

    Google Scholar 

  • Sherr, B., Lee, C. M., and Jelesciewicz, C. Absorption and metabolism of lysine Maillard products in relation to the utilization of L-lysine. J. Agric. Food Chem., 37. 119–122 1989.

    Article  CAS  Google Scholar 

  • Tsen, C.C., and Reddy, P.R.K. Effect of toasting on the nutritive value of bread. J. Food Sci., 42. 1370–1372. 1977.

    Article  Google Scholar 

  • Tsen, C.C., Reddy, P.R.K., and Gehrke, C.W. Effects of conventional baking, microwave baking, and steaming on the nutritive value of regular and fortified breads. J. Food Sci., 42, 402–406. 1977.

    Article  CAS  Google Scholar 

  • Waibel, P.E., and Carpenter, K.J. Mechanism of heat damage in protein. 3. Studies with ε-(γ-L-glutamyl)-L-1ysine. Br. J. Nutr., 27, 509–515. 1972.

    Article  CAS  Google Scholar 

  • Zerbe, G. On Fieller’s theorem and General Linear Model. Am. Stat., 32, 103–105 1978.

    Google Scholar 

  • Ziderman, I.I., and Friedman, M. Thermal and compositional changes of dry wheat gluten-carbohydrate mixtures during simulated crust baking. J. Agric. Food Chem., 33, 1096–1102. 1985.

    Article  CAS  Google Scholar 

  • Ziderman, I. I., Gregorski, K. S., and Friedman, M. Thermal analysis of protein-carbohydrate mixtures in oxygen. Thermochic.) Acta. 114, 109–114. 1987.

    CAS  Google Scholar 

  • Ziderman, I.I., Gregorski, K.S., Lopez, S.V., and Friedman, M. Thermal interaction of ascorbic acid and sodium ascorbate with proteins in relation to nonenzymatic browning and Maillard reactions in foods. J. Agric. Food Chem. 37, 1480–1486. 1989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friedman, M., Finot, PA. (1991). Improvement in the Nutritional Quality of Bread. In: Friedman, M. (eds) Nutritional and Toxicological Consequences of Food Processing. Advances in Experimental Medicine and Biology, vol 289. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2626-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2626-5_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2628-9

  • Online ISBN: 978-1-4899-2626-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics