Skip to main content

A Flexible and Complete Monte Carlo Procedure for the Study of the Choice of Parameters

  • Chapter
Electron Probe Quantitation

Abstract

Most early Monte Carlo programs which intended simulation of electron trajectories with depth distribution profiles put emphasis on the elastic scattering responsible for large angle deflection. The problem is the following: find an effective d(ps) elementary path associated with every d(pz) layer imbedded in the target. There is only one statistical variable besides those of the traditional ZAF data reduction procedure: the scattering angle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Microanalysis and Scanning Electron Microscopy (1978), 121, Les editions de physique, Orsay, France.

    Google Scholar 

  2. Reimer, L., Optik 27, 86 (1986).

    Google Scholar 

  3. Murata, K., Matsukawa, T., and Shimizu, R., Japan J. of Appl. Phys. 10, 67B (1971).

    Google Scholar 

  4. Henoc, J. and Maurice, F., J. Micros. Spect. Elect. 5, 347 (1980).

    Google Scholar 

  5. Newbury, D. E. and Myklebust, R., Ultramicroscopy 3, 391 (1979).

    Article  Google Scholar 

  6. Kyser, D. and Murata, K., IBM J. Res. Devel. 18, 352 (1976).

    Article  Google Scholar 

  7. Worthington, C. R. and Tomlin, S. G., Proc. Phys. Soc. 69, 401 (1956).

    Article  Google Scholar 

  8. Goudsmit, S. and Sanderson J. L., Phys. Rev. 57, 24 (1940).

    Article  Google Scholar 

  9. Bishop, H., Thesis, Cambridge University (1965).

    Google Scholar 

  10. Henoc, J. and Maurice, F., NBS Spec. Publ. 460, 61 (1975).

    Google Scholar 

  11. Shimizu, R., Murata, K., and Shinoda, G., ICXOM Orsay, 127, Hermann, Paris (1966).

    Google Scholar 

  12. Reimer, L., Badde, H. G., and Seidel, H., Angew Z. Physik 31, 145 (1971).

    CAS  Google Scholar 

  13. Kotera, M., Murata, K., and Nagami, K., J. Appl. Phys. 52, 997 (1981).

    Article  CAS  Google Scholar 

  14. Reimer, L. and Krefting, E. R., NBS Spec. Publ. 460, 45 (1976).

    CAS  Google Scholar 

  15. Murata, K., Cvikevich, S., and Kupsis, J. D., ICXOM Toulouse. J. de Physique, colloque C2, 45, 13 (1984).

    Google Scholar 

  16. Henoc, J. and Maurice, F., J. Phys. D: Appl. Phys. 8, 1542 (1975).

    Article  CAS  Google Scholar 

  17. Shimizu, R., Kataoka, Y., Matsukawa, T., Ikuta, T., Murata, K., and Hashimoto, H., J. Phys. D: Appl. Phys. 8, 820 (1975).

    Article  CAS  Google Scholar 

  18. Shimizu, R., Aratama, M., Ichimura, S., Yawazaki, Y., and Ikuta, T., Appl. Phys. Letters 31, No. 10, 692 (1977).

    Google Scholar 

  19. Shimizu, R., Kataoka, Y., Ikuta, T., Hoshikawa, T., and Hashimoto, H., J. Phys. D: Appl. Phys. 9, 101 (1976).

    Article  CAS  Google Scholar 

  20. Terrissol, M., Thesis, Université Paul Sabatier, Toulouse (1978).

    Google Scholar 

  21. Raynal, J., Methods in Computational Physics 6, 1 (1966).

    Google Scholar 

  22. Adler, R., Ferbach, S. and Rotenberg, M., eds., Academic Press, New York.

    Google Scholar 

  23. Gryzinski, M., Phys. Rev. A138, 305 (1965).

    Article  CAS  Google Scholar 

  24. Berger, M. J., Methods in Computational Physics, 1, 135 (1966).

    Google Scholar 

  25. Adler, R., Fernbach, S., Rotenberg, M., eds., Academic Press, New York.

    Google Scholar 

  26. Ritchie, R. H., Phys. Rev. 114, 3, 644 (1959).

    Article  Google Scholar 

  27. Kittel, C., Introduction to Solid State Physics (1968), John Wiley, New York.

    Google Scholar 

  28. Ashley, J. C. and Ritchie, R. H., Phys. Stat. Sol. 40 623 (1970A);

    Google Scholar 

  29. Ashley, J. C. and Ritchie, R. H., Phys. Stat. Sol. 38 425 (1970B).

    Google Scholar 

  30. Sevier, D., Low Energy Electron Spectroscopy (1972), Wiley Interscience, New York.

    Google Scholar 

  31. Ritchie, R. H., Garber; F. W., Nakai, M. Y., and Birkhoff, R. D., Advance in Radiation Biology III (1969), Academic Press, New York.

    Google Scholar 

  32. Henoc, J. and Maurice, F., Rapport CEA-R-4615 (1975).

    Google Scholar 

  33. Castaing, R. and Henoc, J., ICXOM Orsay 1965, 120, Hermann, Paris (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Henoc, J., Maurice, F. (1991). A Flexible and Complete Monte Carlo Procedure for the Study of the Choice of Parameters. In: Heinrich, K.F.J., Newbury, D.E. (eds) Electron Probe Quantitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2617-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2617-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2619-7

  • Online ISBN: 978-1-4899-2617-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics