Skip to main content

A Comprehensive Theory of Electron Probe Microanalysis

  • Chapter

Abstract

An ideal theory for the electron probe microanalyzer would enable the analyst to obtain corrected concentrations that were precise and accurate for essentially any combination of elements and operating conditions. First consider the fundamental assumption of microprobe analysis, i.e., that the characteristic x-ray intensities generated by the electron beam in the specimen are proportional to the mass fraction of each emitting element present and that to determine these quantities entails correcting the observed data for x-ray absorption, backscatter losses and fluorescence effects. To do this requires that the depth distribution of x-ray production be known for the material in question. Therefore a logical starting point in the search would be to devise a theoretical model that would be able to predict the relative number and depth distribution of x-ray production, or φ(ρz) as it is called, as a function of the relevant physical parameters: namely the accelerating potential, E 0, the critical excitation potential of the x rays of interest, E c, the mean atomic number and atomic weight of the specimen, Z and A, and the orientation of the specimen’s surface with respect to the electron beam. If this can be accomplished then immediately a number of other benefits accrue, not the least of which would be an equation for the electron range, valuable information when analyzing specimens that are thought to be nonuniform. That in turn brings up the next requirement: the theory should be able to predict the x-ray signal from various configurations of nonuniform specimens such as thin deposits or layered samples and thin film specimens such as are used in the TEM/STEM. Additional features such as the ability to predict backscattered and transmitted or absorbed electron fluxes from these various types of specimens would also be useful in particular circumstances. To predict the x-ray generation in specimens with two or even three dimensions smaller than the electron range would be the ultimate quest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castaing, R. (1951), Thesis, Univ. of Paris, Paris, France.

    Google Scholar 

  2. Castaing, R. and Descamps, J. (1955), J. Phys. Radium 16, 304.

    Article  CAS  Google Scholar 

  3. Wittry, D. B. (1958), J. Appl. Phys. 29, 1543.

    Google Scholar 

  4. Philibert, J. (1963), Proc. 3rd Int. Cong. X-Ray Optics and Microanalysis, Pattee, Cosslett, Engstrom, eds., Academic Press, New York, 379.

    Google Scholar 

  5. Duncumb, P. (1971), Electron Microscopy and Analysis, Nixon, ed., Conf. Series Inst. Phys., London 1971, 132.

    Google Scholar 

  6. Brown, D. B., Wittry, D. B., and Kyser, D. F. (1969), J. Appl. Phys. 40, 1627.

    Article  CAS  Google Scholar 

  7. Borovskii, I. B. and Rydnik, V. I. (1967), Quantitative Electron Probe Microanalysis, NBS Spec. Publ. 298, Heinrich, ed., 35.

    Google Scholar 

  8. Yakowitz, H. and Newbury, D. E. (1976), SEM (1976) I: 151.

    Google Scholar 

  9. Brown, J. D. and Parobek, L. (1976), X-Ray Spectrometry 5, 36.

    Article  CAS  Google Scholar 

  10. Packwood, R. H. and Brown, J. D. (1980), Microbeam Analysis-1980, Wittry, ed., 45.

    Google Scholar 

  11. Packwood, R. H. and Brown, J. D. (1981), X-Ray Spectrometry 10, 138.

    Article  CAS  Google Scholar 

  12. Bastin, G. F., Heijligers, H. J. M., and van Loo, F. J. J. (1984), Scanning 6, 58.

    Article  CAS  Google Scholar 

  13. Brown, J. D. and Packwood, R. H. (1986), Appl. Surf. Sci. 26, 294.

    Article  CAS  Google Scholar 

  14. Packwood, R. H., Remond, G., and Holloway, P. H. (1988), Surf. Interf. Anal. 11, 127.

    Article  CAS  Google Scholar 

  15. Pouchou, J. L. and Pichoir, F. (1984), Rech. Aerosp., 167 and 349.

    Google Scholar 

  16. Bishop, H. E. (1974), J. Phys. D, Appl. Phys. 7, 2009.

    Google Scholar 

  17. Packwood, R., Parker, C., and Moore, V. E. (1988), Microbeam Analysis-1988, Newbury, ed., 258.

    Google Scholar 

  18. Packwood, R. and Pringle, G., to be published.

    Google Scholar 

  19. Reuter, W., Kuptsis, J. D., Lurio, A., and Kyser, D. F. (1978), J. Phys. D: Appl. Phys. 11, 2633.

    Article  CAS  Google Scholar 

  20. Duncumb, P. and Melford, D. A. (1966), Optiques des Rayons X et Microanalyse, Castaing, Descamps, Philibert, eds., Hermann, Paris, 153.

    Google Scholar 

  21. Remond, G., Giraud, R., Holloway, P. H., and Packwood, R. H., SEM-1984, I, 151.

    Google Scholar 

  22. Packwood, R. H. and Milliken, K. S. (1985), CANMET Report No. PMRL/85–25(TR), May, 1985.

    Google Scholar 

  23. Packwood, R., Microbeam Analysis-1986, Romig, Chambers, eds., 268.

    Google Scholar 

  24. Packwood, R., Moore, V. E., and Thomas, S. E., Microbeam Analysis-1989.

    Google Scholar 

  25. Hutchins, G. A. (1964), The Electron Microprobe, McKinley, Heinrich, Wittry, eds., Washington, 1964, J. Wiley, New York, 390.

    Google Scholar 

  26. Niedrig, H. (1978), SEM (1978) I, 841.

    Google Scholar 

  27. Reuter, W. (1971), Proc. 6th Int. Cong. X-Ray Optics and Microanalysis, Shinoda, Kohra, Ichinokawa, eds., Osaka 1971, Univ. Tokyo, 121.

    Google Scholar 

  28. Packwood, R. H., Remond, G., and Holloway, P. H. (1988), Surf. Interf. Anal. 11, 127.

    Google Scholar 

  29. Shinoda, G., Murata, K., and Shimizu, R. (1967), Quantitative Electron Probe Microanalysis, NBS Spec. Publ. 298, Heinrich, ed., 155.

    Google Scholar 

  30. Cosslett, V. E. and Thomas, R. N., Brit. J. Appl. Phys. 15, 1964, 883 and 16, 1965, 779.

    Article  CAS  Google Scholar 

  31. Bishop, H. E. (1966), Optiques des Rayons X et Microanalyse, Castaing, Descamps, Philibert, eds., Hermann, Paris, 153.

    Google Scholar 

  32. Duncumb, P. and Reed, S. J. B. (1967), Quantitative Electron Probe Microanalysis, NBS Spec. Publ. 298, Heinrich, ed., 133.

    Google Scholar 

  33. Rehbach, W. and Karduck, P. (1986), Proc. 11th Int. Cong. X-Ray Optics & Microanalysis, Brown, Packwood, eds., London-Ontario, 244.

    Google Scholar 

  34. Rehbach, W. and Karduck, P., Microbeam Analysis-1988, Newbury, ed., 285.

    Google Scholar 

  35. Gryzinski, M. (1965), Phys. Rev. 138A, 301, 335, and 358.

    Google Scholar 

  36. Heinrich, K. F. J. (1968), Adv. X-Ray Anal. 11, 40.

    Article  Google Scholar 

  37. Einstein, A. (1963), The Feynmann Lectures on Physics, R. B. Feynmann, R. B. Leighton, M. Sands, Addison Wesley, Reading, MA, 68.

    Google Scholar 

  38. Abe, H., Murata, K., Cvikevich, S., and Kuptsis, J. D. (1985), Microbeam Analysis-1985, Armstrong, ed., 85.

    Google Scholar 

  39. Packwood, R., Remond, G., and Brown, J. D. (1986), Proc. 11th Int. Cong. X-Ray Optics and Microanalysis, Brown, Packwood, eds., London, Ontario, 274.

    Google Scholar 

  40. Waldo, R. (1988), Microbeam Analysis-1988, Newbury, ed., 310.

    Google Scholar 

  41. Hastings, C., Jr. (1955), Approximations for Digital Computers, Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Packwood, R. (1991). A Comprehensive Theory of Electron Probe Microanalysis. In: Heinrich, K.F.J., Newbury, D.E. (eds) Electron Probe Quantitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2617-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2617-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2619-7

  • Online ISBN: 978-1-4899-2617-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics