Skip to main content

The Use of Tracer Experiments and Monte Carlo Calculations in the φ(ρz) Determination for Electron Probe Microanalysis

  • Chapter

Abstract

Electron Probe Microanalysis (EPMA) is a well-established technique for the quantitative elemental analysis of solid materials on a microscopic scale. For a reliable quantification of the characteristic x-ray measurements an appropriate set of standards would be necessary, to cover all possible elements and compounds. In practice only a limited set of pure elements or compounds is available. Therefore for a general use of the technique the relation between the emitted x-ray intensity and the weight fraction c i of the emitting element in the sample should be known for all elements and their possible combinations in compounds. Following the work of Castaing [1] one can write the general form for the emitted primary intensity of element i-radiation:

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaDa % aaleaacaWGPbaabaGaamyzaaaakiabg2da9iaadogacaWGVbGaamOB % aiaadohacaWG0bGaaiOlaiabgwSixlaadogadaWgaaWcbaGaamyAaa % qabaGccqGHflY1cqaHjpWDdaWgaaWcbaGaamyAaaqabaGccqGHflY1 % caWGrbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWGfbWaaSbaaS % qaaiaaicdaaeqaaaGccaGLOaGaayzkaaWaa8qmaeaacqaHvpGzdaWg % aaWcbaGaamyAaaqabaGcdaqadaqaaiabeg8aYjaadQhaaiaawIcaca % GLPaaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiabeE8aJnaa % BaaaleaacaWGPbaabeaakiabeg8aYjaadQhaaiaawIcacaGLPaaaca % WGKbGaeqyWdiNaamOEaaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8 % aaaa!6A7C!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$I_i^e = const. \cdot {c_i} \cdot {\omega _i} \cdot {Q_i}\left( {{E_0}} \right)\int_0^\infty {{\phi _i}\left( {\rho z} \right)\exp \left( { - {\chi _i}\rho z} \right)d\rho z} $$
(1)

Q i is the ionization cross section for the ith level, c i the weight fraction of element i, ω i , the fluorescent yield of the ith level, ρz the mass depth and χ i = (μ/ρ) cos θ with the absorption coefficient μ/ρ and the take-off angle θ. φ i is the absolute distribution of the characteristic x radiation excited by the electrons in a depth ρz of the target.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castaing, R. (1951), O.N.E.R.A.—Publ. No. 55.

    Google Scholar 

  2. Castaing, R. and Descamps, J. (1955), J. Phys. et le Radium 16, 304.

    Article  CAS  Google Scholar 

  3. Brown, D. B. and Ogilvie, R. E. (1966), J. Appl. Phys. 37, 4429.

    Article  CAS  Google Scholar 

  4. Ogilvie, R. E. and Brown, D. B. (1966), 4th ICXOM, Castaing, R., Deschamps, P., and Philibert, J., eds., Paris, p. 139.

    Google Scholar 

  5. Vignes, A. and Dez, G. (1968), Brit. J. Appl. Phys., ser. 2, 1, 1309.

    Google Scholar 

  6. Castaing, R. and Henoc, J., in Ref. 4, p. 120.

    Google Scholar 

  7. Shimizu, R., Murata, K., and Shinoda, G., in Ref. 4, p. 127.

    Google Scholar 

  8. Small, J., Myklebust, R. L., Newbury, D. E., and Heinrich, K. F. J., this volume.

    Google Scholar 

  9. Brown, J. D. (1966), Ph.D. Thesis, Univ. of Maryland.

    Google Scholar 

  10. Brown, J. D. and Parobek, L. (1972), 6th ICXOM, Shinoda, G., Ohra, K., and Ichinokawa, T., eds., Univ. of Tokyo Press 1972, p. 163.

    Google Scholar 

  11. Parobek, L. and Brown, J. D. (1978), X-Ray Spectrom. 7, 26.

    Article  CAS  Google Scholar 

  12. Schmitz, U., Ryder, P. L., and Pitsch, W. (1969), 5th ICXOM, Möllenstedt, G. and Gaukler, K. H., eds., Springer, Berlin 1969, p. 104.

    Google Scholar 

  13. Büchner, A. R. (1971), Doctoral Thesis, Aachen.

    Google Scholar 

  14. Sewell, D. A., Love, G., and Scott, V. D. (1985), J. Phys. D: Appl. Phys. 18, 1233.

    Article  CAS  Google Scholar 

  15. Ref. 14, p. 1245.

    Google Scholar 

  16. Ref. 14, p. 1269.

    Google Scholar 

  17. Love, G., Cox, M. G. C., and Scott, V. D. (1977), J. Phys. D: Appl. Phys. 10, 7.

    Article  CAS  Google Scholar 

  18. Use of Monte Carlo Calculations in Electron-Probe Microanalysis and Scanning Electron Microscopy, Heinrich, K. F. J., Newbury, D. E., and Yakowitz, H., eds., NBS Spec. Publ. 460, 1976.

    Google Scholar 

  19. Myklebust, R. L., Newbury, D. E., and Yakowitz, H. (1976), in Ref. 18, p. 105.

    Google Scholar 

  20. Electron Beam Interaction with Solids for Microscopy, Microanalysis and Microlithography, Kyser, D. F., Niedrig, H., Newbury, D. E., and Shimizu, R., eds., Chicago, SEM, Inc., AMF O’Hare, 1982.

    Google Scholar 

  21. Curgenven, L. and Duncumb, P., Tube Investments Res. Rep. No. 303.

    Google Scholar 

  22. Love, G., Cox, M. G. C., and Scott, V. D. (1976), J. Phys. D: Appl. Phys. 9, 7.

    Article  Google Scholar 

  23. Murata, K., Kotera, H., and Nagami, K. (1983), J. Appl. Phys. 54, 1110.

    Article  CAS  Google Scholar 

  24. Shimizu, R., Nishigori, N., and Murata, K. (1972), 6th ICXOM, Shinoda, G., Ohra, K., and Ichinokawa, T., eds., Univ. of Tokyo Press 1972, p. 95.

    Google Scholar 

  25. Reimer, L., and Lödding, B. (1984), Scanning 6, 128.

    Article  CAS  Google Scholar 

  26. Reimer, L. and Krefting, E. R., in Ref. 18, p. 45.

    Google Scholar 

  27. Karduck, P. and Rehbach, W. (1988), Microbeam Analysis, 227.

    Google Scholar 

  28. Reimer, L. and Stelter, D. (1986), Scanning 8, 265.

    Article  Google Scholar 

  29. Lewis, H. W. (1950), Phys. Rev. 78, 526.

    Article  Google Scholar 

  30. Gryzinski, M. (1965), Phys. Rev. 138, 2A, 337.

    Google Scholar 

  31. Bethe, H. (1930), Ann. Phys. 5, 325.

    Article  CAS  Google Scholar 

  32. Rao Sahib, T. S. and Wittry, D. W. (1974), J. Appl. Phys. 45, 5060.

    Article  CAS  Google Scholar 

  33. Hutchins, G. A. (1974), Electron Probe Microanalysis, in Characterization of Solid Surfaces, Kane, P. F. and Larrabee, G. B., eds., New York, p. 441.

    Chapter  Google Scholar 

  34. Powell, C. J., in Ref. 18, p. 97.

    Google Scholar 

  35. Powell, C. J., in Ref. 20, p. 19.

    Google Scholar 

  36. Rehbach, W., Doctoral Thesis, Aachen 1988.

    Google Scholar 

  37. Rehbach, W. and Karduck, P. (1988), Microbeam Analysis 1988, 285.

    Google Scholar 

  38. Love, G., Cox, M. G., and Scott, V. D. (1978), J. Phys. D: Appl. Phys. 11, 23.

    Article  CAS  Google Scholar 

  39. Reuter, W., in Ref. 10, p. 121.

    Google Scholar 

  40. Hunger, H.-J. and Kuchler, L. (1979), Phys. Status Solidi A: 56, K45.

    Article  CAS  Google Scholar 

  41. Packwood, R. H. and Brown, J. D. (1981), X-Ray Spectrom. 10, 138.

    Article  CAS  Google Scholar 

  42. Karduck, P. and Rehbach, W. (1985), Mikrochim. Acta, Suppl. 11, 289.

    Google Scholar 

  43. Pouchou, J. L. and Pichoir, F. (1984), Rech. Aerosp. 3.

    Google Scholar 

  44. Pouchou, J. L. and Pichoir, F. (1987), Proc. 11th ICXOM, Packwood, R. H. and Brown, J. D., eds., London, Ontario, 1987, p. 249.

    Google Scholar 

  45. Karduck, P. and Rehbach, W., in Ref. 43, p. 244.

    Google Scholar 

  46. Pouchou, J. L., Pichoir, F., and Girard, F. (1980), J. Microsc. Spectrosc. Electr. 5, 425.

    CAS  Google Scholar 

  47. Bastin, G. F., van Loo, F. J. J., and Heijligers, H. J. M. (1984), X-Ray Spectrom. 12, 91.

    Article  Google Scholar 

  48. Bastin, G. F., Heijligers, H. J. M., and van Loo, F. J. J. (1986), Scanning 8, 45.

    Article  CAS  Google Scholar 

  49. Willich, P. and Obertrop, D. (1985), Mikrochim. Acta, Suppl. 11, 299.

    CAS  Google Scholar 

  50. Desalvo, A. and Rosa, R. (1979), Materials Chemistry 4, 495.

    Article  CAS  Google Scholar 

  51. Pouchou, J. L. and Pichoir, F. (1984–5), Rech. Aerosp. 5, 349.

    Google Scholar 

  52. Kyser, D. F. and Murata, K. (1976), NBS Spec. Publ. 460, 129.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karduck, P., Rehbach, W. (1991). The Use of Tracer Experiments and Monte Carlo Calculations in the φ(ρz) Determination for Electron Probe Microanalysis. In: Heinrich, K.F.J., Newbury, D.E. (eds) Electron Probe Quantitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2617-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2617-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2619-7

  • Online ISBN: 978-1-4899-2617-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics