Skip to main content

The Use of Mössbauer Spectroscopy in the Study of Soil Colloidal Materials

  • Chapter
Soil Colloids and Their Associations in Aggregates

Part of the book series: NATO ASI Series ((NSSB,volume 214))

  • 642 Accesses

Abstract

Mössbauer spectroscopy has many applications in the characterisation of iron in natural materials, but most of the work has been carried out by specialists in spectroscopic techniques. However, the recent introduction of low cost spectrometers means that Mössbauer facilities are likely to become available much more widely in the future, and indeed, there are indications that use of the technique may become routine for investigations of iron-containing materials. This chapter, therefore, is aimed at the non-specialist, and in it the Mössbauer effect will be described, and the information that can be obtained from it will be outlined in a simple qualitative manner, with emphasis on those factors which are likely to influence the spectra obtained from colloidal materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bancroft, G.M. 1973. Mössbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists. McGraw-Hill, London.

    Google Scholar 

  • Bancroft, G.M. 1979. Mössbauer spectroscopic studies of the chemical state of iron in silicate minerals. J. Phys. (Paris) Colloq. C2 40, 464–471.

    Google Scholar 

  • Bauminger, E.R., Ben-Dor, L., Feiner, I., Fischbein, E., Nowik, I. and Ofer, S. 1977. Mössbauer effect studies of β-Fe2O3. Physica 86-88B, 910–912.

    Google Scholar 

  • Besson, G., Bookin, A.S., Dainyak, L.G., Rautureau, M., Tsipursky, S.I., Tchoubar, C. and Drits, V.A. 1983. Use of diffraction and Mössbauer methods for the structural and crystallochemical characterisation of nontronites. J. Appl. Cryst. 16, 374–383.

    Article  CAS  Google Scholar 

  • Carlson, L. and Schwertmann, U. 1980. Natural occurrence of feroxyhite (δ’-FeOOH). Clays Clay Minerals 28, 272–280.

    Article  CAS  Google Scholar 

  • Childs, C.W. and Baker-Sherman, J.G. 1984. Mössbauer spectra and parameters of standard samples 1. N.Z. Soil Bureau Sci. Report 66, D.S.I.R., Lower Hutt, New Zealand.

    Google Scholar 

  • Childs, C.W., Goodman, B.A., Paterson, E. and Woodhams, F.W.D. 1980. The nature of iron in akaganeite (β-FeOOH). Aust. J. Chem. 33, 15–26.

    Article  CAS  Google Scholar 

  • Coey, J.M.D. 1980. Clay minerals and their transformations studied with nuclear techniques: the contribution of Mössbauer spectroscopy. Atomic Energy Rev. 18, 73–124.

    CAS  Google Scholar 

  • Collins, D.W., Dehn, J.T. and Mulay, L.N. 1967. Superparamagnetism and Mössbauer spectroscopy: review and new results on iron dispersion. In I.J. Gruverman (ed.), Mössbauer Effect Methodology Vol. 3. Plenum, New York, pp. 103–122.

    Google Scholar 

  • de Grave, E., Bowen, L.H. and Weed, S.B. 1982. Mössbauer study of aluminium-substituted hematites. J. Magnetism Magnetic Materials 27, 98–108.

    Article  Google Scholar 

  • Dickson, D.P.E., Heller-Kallai, L. and Rozenson, I. 1980. Mössbauer spectroscopic studies of humic acid and fulvic acid soil fractions. J. Phys. (Paris) Colloq. CI 41, 409–410.

    Google Scholar 

  • Forsyth, J.B., Hedley, I.G. and Johnson, C.E. 1968. The magnetic structure and hyperfine field of goethite (α-FeOOH). J. Phys. C Ser. 2 1, 179–188.

    Google Scholar 

  • Freeman, A.J. and Watson, R.E. 1965. Hyperfine interactions in magnetic materials. In G.T. Rado and H. Suhl (eds.), Magnetism. Academic Press, New York, pp. 167–305.

    Google Scholar 

  • Fysh, S.A. and Clark, P.E. 1982a. Aluminous goethite: A Mössbauer study. Phys. Chem. Minerals 8, 180–187.

    Article  CAS  Google Scholar 

  • Fysh S.A. and Clark, P.E. 1982b. Aluminous hematite: A Mössbauer study. Phys. Chem. Minerals 8, 257–267.

    Article  CAS  Google Scholar 

  • Fysh, S.A., Cashion, J.D. and Clark, P.E. 1983. Mössbauer effect studies of iron in kaolin 1. Structural iron. Clays Clay Minerals 31, 285–292.

    Article  CAS  Google Scholar 

  • Golden, D.C., Bowen, L.H., Weed, S.B. and Bigham, J.M., 1979. Mössbauer studies of synthetic and soil-occurring aluminium-substituted goethites. Soil Sci. Soc. Amer. J. 43, 802–808.

    Article  CAS  Google Scholar 

  • Goodman, B.A. 1976. The effect of lattice substitutions on the derivation of quantitative site populations from the Mössbauer spectra of 2:1 layer-lattice silicates. J. Phys. (Paris), Colloq. C6 37, 819–823.

    Article  Google Scholar 

  • Goodman, B.A. 1978. The Mössbauer spectra of nontronites: consideration of an alternative assignment. Clays Clay Minerals 26, 176–177.

    Article  CAS  Google Scholar 

  • Goodman, B.A. 1980. Mössbauer spectroscopy. In J.W. Stucki and W.L. Banwart (eds.), Advanced Chemical Methods for Soil and Clay Minerals Research. Reidel, Dordrecht, pp. 1–92.

    Chapter  Google Scholar 

  • Goodman, B.A. and Cheshire, M.V. 1979. A Mössbauer spectroscopic study of the effect of pH on the reaction between iron and humic acid. J. Soil Sci. 30, 85–91.

    Article  CAS  Google Scholar 

  • Goodman, B.A. and Cheshire, M.V. (1985). A Mössbauer effect study of the reduction of iron by fulvic acid. Volunteered Papers, 2nd Intern. Conf., Intern. Humic Substances Soc. (Birmingham, 1984), pp. 180-182.

    Google Scholar 

  • Goodman, B.A., Russell, J.D., Fraser, A.R. and Woodhams, F.W.D. 1976. A Mössbauer and infrared spectroscopic study of the structure of nontronite. Clays Clay Minerals 24, 53–59.

    Article  CAS  Google Scholar 

  • Govaert, A., Dauwe, C., De Sitter, J., De Grave, E. and Robbrecht, G. 1977. On the bulk and surface contributions to the magnetic hyperfine field of small particles of goethite (α-FeOOH). Physica 86-88B, 1427–1428.

    Google Scholar 

  • Heller-Kallai, L. and Rozenson, I. 1981. The use of Mössbauer spectroscopy of iron in clay mineralogy. Phys. Chem. Minerals 7, 223–238.

    Article  CAS  Google Scholar 

  • Helsen, J.A. and Goodman, B.A. 1983. Characterzation of iron (II) and iron (III)-exchanged montmorillonite and hectorite using the Mössbauer effect. Clay Minerals 18, 117–125.

    Article  CAS  Google Scholar 

  • Johnson, C.E. 1969. Antiferromagnetism of γ-FeOOH: a Mössbauer effect study. J. Phys. C (Solid St. Phys.) Ser. 2 2, 1996–2002.

    CAS  Google Scholar 

  • Kundig, W., Ando, K.J., Lindquist, R.H. and Constabaris, G. 1967. Mössbauer studies of ultrafine particles of NiO and α-Fe2O3. Czech. J. Phys. 17, 467–473.

    Article  Google Scholar 

  • Lakatos, B., Korecz, L. and Meisel, J. 1977. Comparative study on the Mössbauer parameters of iron humates and polyuronates. Geoderma 19, 149–157.

    Article  CAS  Google Scholar 

  • Langford, C.H., Wong, S.M. and Underdown, A.W. 1981. The interaction of a soil fulvic acid with precipitating hydrous ferric oxide at pH=6. Can. J. Chem. 59, 181–186.

    Article  CAS  Google Scholar 

  • Lindquist, R.H., Constabaris, G., Kundig, W. and Portis, A.M. 1968. Mössbauer spectra of iron-57 in superparamagnetic nickel. J. Appl. Phys. 39, 1001–1003.

    Article  CAS  Google Scholar 

  • Longworth, G. and Tite, M. S. 1977. Mössbauer and magnetic susceptibility studies of iron oxides in soils from archaeological sites. Archaeometry 19, 3–14.

    Article  Google Scholar 

  • Lund, C.R.F. and Dumesic, J.A. 1981. Strong oxide-oxide interactions in silica-supported magnetite catalysts. 1. X-ray diffraction and Mössbauer spectroscopy evidence for interaction. J. Phys. Chem. 85, 3175–3180.

    Article  CAS  Google Scholar 

  • McBride, M. B., Goodman, B.A., Russell, J.D., Fraser, A.R., Farmer, V.C. and Dickson, D.P.E. 1983. Characterisation of iron in alkaline EDTA and NH4OH extracts of podzols. J. Soil Sci. 34, 825–840.

    Article  CAS  Google Scholar 

  • Maradudin, A.A. and Melingaillis, J. 1964. Dynamical properties of surface atoms. Phys. Rev. 133A, 1188–1193.

    Article  Google Scholar 

  • Mineeva, R.M. 1978. Relationship between Mössbauer spectra and defect structure in biotites from electric field gradient calculations. Phys. Chem. Minerals 2, 261–211.

    Article  Google Scholar 

  • Mørup, S. and Topsøe, H. 1976. Mössbauer studes of thermal excitations in magnetically ordered microcrystals. Appl. Phys. 11, 63–66.

    Article  Google Scholar 

  • Mørup, S. and Topsøe, H. 1977. Direct particle size determination using Mössbauer spectroscopy: application to Fe3O4. In D. Barb and D. Tarina (eds.), Proc. Intern. Conf. Mössbauer Spectroscopy 1, 229–230.

    Google Scholar 

  • Mørup, S., Madsen, M.B., Franck, J., Villadsen, J. and Koch, C.J.W. 1983. A new interpretation of Mössbauer spectra of microcrystalline goethite:’ super-ferromagnetism’ or’ super-spin-glass’ behaviour? J. Magnetism Magnetic Materials 440, 163–174.

    Article  Google Scholar 

  • Murad, E. and Schwertmann, U. 1980. The Mössbauer spectrum of ferrihydrite and its relations to those of other iron oxides. Amer. Mineralogist 65, 1044–1049.

    Google Scholar 

  • Murad, E. and Schwertmann, U. 1983. The influence of Al substitution and crystallinity on the Mössbauer spectra of goethite. Clay Minerals 18, 301–312.

    Article  CAS  Google Scholar 

  • Neel, L. 1949. Influence of thermal fluctuations on magnetisation of very small ferromagnetic particles. C.R. Acad. Sci. Paris 228, 664–666.

    Google Scholar 

  • Niemantsverdriet, J.W., Flipse, C.F.J., Selman, B., Van Loef, J.J. and Van der Kraan, A.M. 1984. Influence of particle motion on the Mössbauer effect in microcrystals α-FeOOH and α-Fe2O3. J. Phys. Chem. Solids 39, 137–144.

    Google Scholar 

  • Nininger, R.C. and Schroeer, D. 1978. Mössbauer studies of the Morin transition in bulk and microcrystaline α-Fe2O3. J. Phys. Chem. Solids 39, 137–144.

    Article  CAS  Google Scholar 

  • Nistor, C.I. 1973. Mössbauer effect detected mulitplicity of quadrupole interaction in the magnetite. Rev., Roum. Phys. 18, 867–873.

    CAS  Google Scholar 

  • Owen, J. and Taylor, D.R. 1968. Transferred hyperfine interactions and spin deviations in magnetic salts. J. Appl. Phys. 39, 791–796.

    Article  CAS  Google Scholar 

  • Sanz, J., Meyers, J., Vielvoye, L. and Stone, W.E.E. 1978. The location and content of iron in natural biotites and phlogopites: a comparison of several methods. Clay Minerals 13, 45–52.

    Article  CAS  Google Scholar 

  • Schroeer, D. 1970. The Mössbauer effect in microcrystals. In I.J. Gruverman (ed.), Mössbauer Effect Methodology Vol. 5. Plenum, New York, pp. 141–162.

    Chapter  Google Scholar 

  • Simmons, G.W. and Leidheiser, H. 1976. Corrosion and interfacial reactions. In R.L. Cohen (ed.), Applications of Mössbauer Spectroscopy Vol. 1. Academic Press, New York, pp. 85–125.

    Google Scholar 

  • Tobler, L., Kundig, W. and Savic, I. 1981. Investigation of the Morin transition in α-Fe2O3 by the Mössbauer effect. Hyperfine Interactions 10, 1017–1022.

    Article  CAS  Google Scholar 

  • Van der Kraan, A.M. 1973. Mössbauer effect studies of surface ions of ultrafine α-Fe2O3 particles. Phys. Status Solidi (A) 18, 215–226.

    Article  Google Scholar 

  • Van der Woude, F. 1966. Mössbauer effect in α-Fe2O3. Phys. Status Solidi 17, 417–432.

    Article  Google Scholar 

  • Van Wieringen, J.S. 1968. Note of Mössbauer fraction in powders of small particles. Phys. Letters A 26, 370–371.

    Article  Google Scholar 

  • Viegers, M.P.A. and Trooster, J.M. 1977. Mössbauer spectroscopy of small gold particles. Phys. Rev. B 15, 72–83.

    Article  CAS  Google Scholar 

  • Wickman, H.H. 1966. Mössbauer paramagnetic hyperfine structure. In I.J. Gruverman (ed.), Mössbauer Effect Methodology Vol. 2. Plenum, New York, 39–66.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodman, B.A. (1990). The Use of Mössbauer Spectroscopy in the Study of Soil Colloidal Materials. In: De Boodt, M.F., Hayes, M.H.B., Herbillon, A., De Strooper, E.B.A., Tuck, J.J. (eds) Soil Colloids and Their Associations in Aggregates. NATO ASI Series, vol 214. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2611-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2611-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2613-5

  • Online ISBN: 978-1-4899-2611-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics