Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 214))

Abstract

The sizes of Fe-oxide crystals in soils usually range between 10 and 100 nm. Together with the poorly crystalline Al-silicates, such as allophane and the humic substances, the iron oxides are among the smallest particles found in soils. From a comparison of the sizes of common soil minerals it can be seen that iron oxides usually belong to those soil minerals which have very small particle sizes. Consequently, iron oxide particles can contribute significantly to the total surface area of soils even when they compose only a few per cent of the components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainsworth, C.C. 1977. Phosphate Sorption on Goethites. Ph.D Thesis, University of Georgia, Athens, Georgia.

    Google Scholar 

  • Arca, M.N. and Weed, S.B. 1966. Soil aggregation and porosity in relation to contents of free iron oxide and clay. Soil Sci. 101, 164–170.

    Article  CAS  Google Scholar 

  • Atkinson, R,J, 1969. Crystal Morphology and Surface Reactivity of Goethite. Ph.D Thesis, University of Western Australia, Nedlands, W.A.

    Google Scholar 

  • Baron, V. and Torrent, J. 1984. Influence of aluminium substitution on the color of synthetic hematites. Clays Clay Min. 32, 157–158.

    Article  Google Scholar 

  • Barrow, N.J. 1985. Reaction of plant nutrients and of pollutants with variable-charge soils. Adv. Agron. 38, 183–230.

    Article  CAS  Google Scholar 

  • Bigham, J.M., Golden, D.C., Buol, S.W., Weed, S.B. and Bowen, L.H. 1978. Iron oxide mineralogy of well-drained ultisols and oxisols. II. Influence on color, surface area, and phosphate retention. Soil Sci. Soc. Am. J. 42, 825–830.

    Article  CAS  Google Scholar 

  • Blackmore, A.V. 1973. Aggregation of clay by the products of iron(III) hydrolysis. Aust. J. Soil Res. 11, 75–82.

    Article  CAS  Google Scholar 

  • Borggaard, O.K. 1983a. Iron oxides in relation to aggregation of soil particles. Acta Agric. Scand. 23, 257–260.

    Article  Google Scholar 

  • Borggaard, O.K. 1983b. The influence of iron oxides on the surface area of soil. Soil Sci. 32, 427–432.

    Google Scholar 

  • Cambier, P. and Prost, R. 1981. Etude des associations argile-oxyde: organisation des constituents d’un materiau ferrallitique. Agronomie 1, 713–722.

    Article  Google Scholar 

  • Carlson, L. and Schwertmann, U. 1981. Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 45, 421–429.

    Article  CAS  Google Scholar 

  • Cavallero, N. and McBride, M.B. 1984. Effect of selective dissolution on charge and surface properties of an acid soil clay. Clays Clay Min. 32, 283–290.

    Article  Google Scholar 

  • Cornell, R.M., Posner, A.M. and Quirk, J.P. 1974. Crystal morphology and the dissolution of goethite. J. Inorg. Nucl. Chem. 36, 1337–1946.

    Article  Google Scholar 

  • Cornell, R.M., Posner, A.M. and Quirk, J.P. 1976. The kinetics and mechanism of the acid dissolution of goethite α-FeOOH. J. Inorg. Nucl. Chem. 38, 563–567.

    Article  CAS  Google Scholar 

  • Curi, N. and Franzmeier, D.P. 1984. Toposequence of oxisols from the central plateau of Brazil. Soil Sci. Soc. Am. J., 48, 341–346.

    Article  CAS  Google Scholar 

  • Deshpande, T.L., Greenland, D.J. and Quirk, J.P. 1968. Changes in soil properties associated with the removal of iron and aluminium oxides. Soil Sci. 19, 108–122.

    Article  CAS  Google Scholar 

  • Fischer, W.R. and Pfanneberg, T. 1984. An improved method for testing the rate of iron(III) oxide reduction by bacteria. Zbl. Mikrobiol. 139, 163–166.

    CAS  Google Scholar 

  • Fischer, W.R. and Schwertmann, U. 1975. The formation of hematite from amorphous iron(III) hydroxide. Clays Clay Min. 23, 33–37.

    Article  CAS  Google Scholar 

  • Fordham, A.W. and Norrish, K. 1979. Electron microprobe and electron microscope studies of soil clay particles. Aust. J. Soil Res. 17, 283–306.

    Article  CAS  Google Scholar 

  • Fordham, A.W. and Norrish, K. 1979. The nature of soil particles particularly those reacting with arsenate in a series of chemically treated samples. Aust. J. Soil Res. 21, 455–477.

    Article  Google Scholar 

  • Furnichi, R. Sato, N. and Okamoto, G. 1965. Study on the dissolution property of aged ferric oxides in sulfuric acid solution. Kogyo Kagaku Zasshi 68, 1178–1183.

    Article  Google Scholar 

  • Gallez, A., Juo, A.S.R. and Herbillon, A.J. 1976. Surface and charge characteristics of selected soils in the tropics. Soil Sci. Soc. Am. J. 40, 601–608.

    Article  CAS  Google Scholar 

  • Gangas, N.H., Simopoulos, A., Kostikas, A., Yassoglou, N.J. and Filippakis, S. 1973. Mössbauer studies of small particles of iron oxides in soil. Clays Clay Min. 21, 151–160.

    Article  CAS  Google Scholar 

  • Gerth, J. and Brummer, G. 1984. Adsorption und Festlegung von Nickel, Zink und Cadmium durch Goethit (α-FeOOH). Fresenius Z. Anal. Chem. 316, 616–620.

    Article  Google Scholar 

  • Gillman, G.P. and Bell, L.C. 1976. Surface charge characteristics of six weathered soils from tropical North Queensland. Aust. J. Soil Res. 14, 351–360.

    Article  CAS  Google Scholar 

  • Goldberg, S. and Sposito, G. 1984. A chemical model of phosphate adsorption by soils. II. Noncalcareous soils. Soil Sci. Soc. Am. J. 48, 779–783.

    Article  CAS  Google Scholar 

  • Golden, D.C. 1978. Physical and Chemical Properties of Aluminium-Substituted Goethite. Ph.D. Dissertation, Department of Soil Science, North Carolina State University, Raleigh.

    Google Scholar 

  • Golden, D.C. and Dixon, J.B. 1984. Kaolin — iron oxide interactions. Agron. Abst. pp. 272.

    Google Scholar 

  • Golden, D.C. Bowen, L.H. Weed, S.B. and Bigham, J.M. 1979. Mössbauer studies of synthetic and soil-occurring aluminium-substituted goethites. Soil Sci. Soc. Am. J. 43, 802–808.

    Article  CAS  Google Scholar 

  • Greenland, D.J., Oades, J.M. and Sherwin, T.W. 1968. Electron-microscope observations of iron oxides in some red soils. Soil Sci. 19, 123–126.

    Article  CAS  Google Scholar 

  • Hingston, F.J., Posner, A.M. and Quirk, J.P. 1972. Anion adsorption by goethite and gibbsite. 1. The role of the proton in determining adsorption envelopes. Soil Sci. 23, 177–192.

    Article  CAS  Google Scholar 

  • Ibanga, I.J., Buol, S.W. Weed, S.B. and Bowen, L.H. 1983. Iron oxides in petroferric materials. Soil Sci. Soc. Amer. J. 47, 1240–1246.

    Article  CAS  Google Scholar 

  • Janot, Ch., Gibert, H. and Tobias, C. 1973. Characterisation kaolinites ferriferes par spectometrie Mössbauer. Bull. Soc. Fr. Miner. Crystallogr. 96, 281–291.

    CAS  Google Scholar 

  • Jones, R.C., Hudnall, W.H. and Sakai, W.S. 1982. Some highly weathered soils of Puerto Rico, 2. Mineralogy. Geoderma 27, 75–137.

    Article  CAS  Google Scholar 

  • Kabai, J. 1973. Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution. Acta Chem. Acad. Sci. Hung. 78, 57–73.

    CAS  Google Scholar 

  • Kämpf, M. 1981. Die Eisenoxidmineralogie einer Klimasequenz von Böden aus Eruptiva in Rio Grande so Sul, Brasilien. Dissertation, Technische Universität München, Germany.

    Google Scholar 

  • Karim, M.J. and Adams, W.A. 1984. Relationships between sesquioxides, kaolinite, and phosphate sorption in a catena of Oxisols in Malawi. Soil Sci. Soc. Am. J. 48, 406–409.

    Article  CAS  Google Scholar 

  • Kemper, W.D. 1966. Aggregate stability of soils from Western United States and Canada. USDA Tech. Bull No. 1355.

    Google Scholar 

  • Kitagawe, Y. 1983. Goethite and hematite in some soils from the Amazon region. Soil Sci. Plant Nutr. 29, 209–217.

    Article  Google Scholar 

  • Klug, H.P. and Alexander, L.E. 1974. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edition. J.Wiley and Sons, New York.

    Google Scholar 

  • Kuo, S. and McNeal, B.L. 1984. Effects of pH and phosphate on cadmium sorpion by a hydrous ferric oxide. Soil Sci. Soc. Am. J. 48, 1040–1044.

    Article  CAS  Google Scholar 

  • Kuron, H. and Walter, D. 1964. Über Bildung und Bindung von Mikroaggregaten in Böden. Z. Pflanzenernähr. 104, 12–24.

    Article  CAS  Google Scholar 

  • McIntyre, D.S. 1956. The effect of free ferric oxide on the structure of some Terra Rosa and Rendzina soils. Soil Sci. 7, 302–306.

    Article  CAS  Google Scholar 

  • McNeal, B.L., Layfield, D.A., Norvell, W.A. and Rhoades, J.D. 1968. Factors influencing hydraulic conductivity of soils in the presence of mixed salt solution. Soil Sci. Soc. Am. Proc. 32, 187–190.

    Article  CAS  Google Scholar 

  • Murad, E. and Schwertmann, U, 1983. The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite. Clay Min. 18, 301–312.

    Article  CAS  Google Scholar 

  • Nininger, R.C. and Schroer, D. 1978. Mössbauer studies of the Morin transition in bulk and microcrystalline α-Fe2O3. J. Phys. Chem. Solids 39, 137–144.

    Article  CAS  Google Scholar 

  • Parfitt, R.L. 1980. Chemical properties of variable charge soils. In B.K.G. Theng (ed.), Soils with Variable Charge. New Zealand Soc. Soil Sci., pp. 167-194.

    Google Scholar 

  • Pena, F. and Torrent, J. 1984. Relationships between phosphate sorption and iron oxides in alfisols from a river terrace sequence of Mediterranean Spain. Geoderma 33, 283–296.

    Article  CAS  Google Scholar 

  • Rengasamy, P. and Oades, J.M. 1977. Interaction of monomeric and polymeric species of metal ions with clay surfaces. II. Changes in surface properties of clays after addition of iron(III). Aust. J. Soil Res. 15, 235–242.

    Article  CAS  Google Scholar 

  • Schahabi, S. and Schwertmann, U. 1970. Der Einfluß von synthetischen Eisenoxiden auf die Aggregation zweier Lößbodenhorizonte. Z. Pflanzenernähr. Bodenk. 125, 193–204.

    Article  CAS  Google Scholar 

  • Schulze, D.G. 1984. The influence of aluminium on iron oxides VIII. Unit cell dimensions of Al substituted goethites and estimation of Al from them. Clays Clay Min. 32, 36–44.

    Article  CAS  Google Scholar 

  • Schulze, D.G. and Schwertmann, U. 1984. The influence of aluminium on iron oxides X. The properties of Al-substituted goethites. Clay Min. 19, 521–539.

    Article  CAS  Google Scholar 

  • Schwertmann, U. 1984. Aluminiumsubstitution in pedogenen Eisenoxiden — eine Übersicht. Z. Pflanzernähr. Bodenk. 147, 385–399.

    Article  CAS  Google Scholar 

  • Schwertmann, U. 1984. The influence of aluminium on iron oxides IX. Dissolution of Al-goethites in 6m HCl. Clay Min. 19, 9–19.

    Article  CAS  Google Scholar 

  • Schwertmann, U. and Fechter, H. 1982. The point of zero charge on natural and synthetic ferrihydrites and its relation to adsorbed silicate. Clay Min. 17, 471–476.

    Article  CAS  Google Scholar 

  • Schwertmann, U. and Fischer, W.R. 1973. Natural ‘amorphous’ ferric hydroxide. Geoderma 10, 237–247.

    Article  CAS  Google Scholar 

  • Schwertmann, U. and Kämpf, N. 1983. Oxidos de ferro jovens em ambientes pedogeneticos brasileiros. R. bras. Ci. Solo, 7, 251–255.

    CAS  Google Scholar 

  • Schwertmann, U. and Kämpf, N. 1985. Properties of goethite and hematite in kaolinitic soils of Southern and Central Brazil. Soil Sci. 139, 344–350.

    Article  CAS  Google Scholar 

  • Schwertmann, U. and Murad, E. 1983. The effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Min. 31, 277–284.

    Article  CAS  Google Scholar 

  • Schwertmann, U. and Taylor, R.M. 1979. Natural and synthetic poorly crystallised lepidocrocite. Clay Min. 14, 285–293.

    Article  CAS  Google Scholar 

  • Schwertmann, U. and Taylor, R.M. 1988. Iron oxides. In J.B. Dixon and S.B. Weed (eds.), Minerals in Soil Environments, 2nd. Edition Soil Sci. Soc. Amer. Inc., Madison, Wisconsin, U.S.A.

    Google Scholar 

  • Schwertmann, U., Cambier, Ph. and Murad, E. 1985. Properties of goethites of varying crystalinity. Clays Clay Min. 33, 369–378.

    Article  CAS  Google Scholar 

  • Schwertmann, U., Fitzpatrick, R.W. and LeRoux, J. 1977. Al-substitution and differential disorder in soil hematites. Clays Clay Min. 25, 373–374.

    Article  CAS  Google Scholar 

  • Schwertmann, U., Kodama, H. and Fischer, W.R. 1986. Mutual interactions between organics and iron oxides. In P.M. Huang, (ed.), Interactions of Soil Minerals with Natural Organics and Microbes. Soil Sci. Soc. Amer. Inc., Madison, Wis. USA., pp. 223-250.

    Google Scholar 

  • Schwertmann, U., Fitzpatrick, R.W., Taylor, R.M. and Lewis, D.G. 1979. The influence of aluminium on iron oxides. Part II. Preparation and properties of Al-substituted hematites. Clays Clay Min. 27, 105–112.

    Article  CAS  Google Scholar 

  • Segalen, P., Gautheyrou, M., Guenin, H., Camacho, E., Bosch, D. and Cardenas, A. 1983. Etude d’un sol derive de peridotite dans l’ouest de Cuba. Aspects physiques et chemiques (1). Cah. O.R.S.T.O.M. ser. Pedol. 20, 239–245.

    CAS  Google Scholar 

  • Sidhu, P.S., Gilkes, R.J., Cornell, R.M., Posner, A.M. and Quirk, J.P. 1981. Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays Clay Min. 29, 269–276.

    Article  CAS  Google Scholar 

  • Smith, K.L. and Eggleton, R.A. 1983. Botroidal goethite: a transmission electron microscope study. Clays Clay Min. 5, 392–396.

    Article  Google Scholar 

  • Süsser, P. and Schwertmann, U. 1983. Iron oxide mineralogy of ochreous deposits in drain pipes and ditches. Z. Kulturtechnik u. Flurbereinigung 24, 386–395.

    Google Scholar 

  • Towe, K.M. and Bradley, W.F. 1967. Mineralogical constitution of colloidal ‘hydrous ferric oxides’. J. Colloid. Interface Sci. 24, 284–392.

    Article  Google Scholar 

  • Wann, S.S. and Uehara, G. 1978. Surface charge manipulation of constant surface potential soil colloids: I. Relation to sorbed phosphorous. Soil Sci. Soc. Am. J. 42, 565–570.

    Article  CAS  Google Scholar 

  • Williams, R.J.P. 1984. An introduction to biominerals and the role of organic molecules in their formation. Phil. Trans. Royal Soc. Lond. 304, 411–424.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwertmann, U. (1990). Some Properties of Soil and Synthetic Iron Oxides. In: De Boodt, M.F., Hayes, M.H.B., Herbillon, A., De Strooper, E.B.A., Tuck, J.J. (eds) Soil Colloids and Their Associations in Aggregates. NATO ASI Series, vol 214. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2611-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2611-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2613-5

  • Online ISBN: 978-1-4899-2611-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics