Skip to main content

Low-Dimensional Chaos in a Simple Biological Model of Neocortex

Implications for Cardiovascular and Cognitive Disorders

  • Chapter
International Perspectives on Self-Regulation and Health

Abstract

Our laboratory has been interested in understanding the neural mechanisms involved in information processing in neocortex, especially in those structures that regulate the sensory and cardiovascular systems. Studies in comparative physiology suggest a theoretical basis for the regulation of the cardiovascular system by the brain. Following his life’s work, Cannon (1931) hypothesized the existence of a cerebral mechanism in which sensory input and autonomic output were simultaneously orchestrated; this orchestration, he suggested, became a focus for natural selection and evolved to enable the higher mammal to attend to its environment and simultaneously to prepare autonomic support in anticipation of the occurrence of certain survival behaviors that might be released.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babloyantz, A., & Destexhe, A. (1986). Low-dimensional chaos in an instance of epilepsy. Proceedings of the National Academy of Sciences of the USA, 83, 3513–3517.

    Article  PubMed  CAS  Google Scholar 

  • Babloyantz, A., & Destexhe, A. (1987). Strange attractors in the human cortex. In L. Rensing, U. van der Heiden, & M. C. Mackey (Eds.), Temporal disorder in human oscillatory systems. Springer Series in Synergetics (Vol. 36, pp. 488–456). Berlin: Springer-Verlag.

    Google Scholar 

  • Bak, P. (1985). Mode-locking and the transition to chaos in dissipative systems. Physica Scripta, T9, 50–58.

    Article  Google Scholar 

  • Bak, P. (1986). The devil’s staircase. Physics Today, 86, 38–45.

    Article  Google Scholar 

  • Barnsley, M. F., & Sloan, A. D. (1988). A better way to compress images. Byte, 1, 215–223.

    Google Scholar 

  • Barnsley, M. F., Massopust, P., Strickland, H., & Sloan, A. D. (1987). Fractal modeling of biological structures. Annals of New York Academy of Sciences, 504, 179–194.

    Article  CAS  Google Scholar 

  • Bliss, T. V. P., Goddard, G. V., & Rives, M. (1983). Reduction of long-term potentiation in the dentate gyrus of the rat following selective depletion of monoamines. Journal of Physiology (London), 334, 475–491.

    CAS  Google Scholar 

  • Bullock, T. H., & Basar, E. (1988). Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates. Brain Research, 472, 57–75.

    PubMed  CAS  Google Scholar 

  • Cannon, W. B. (1931). Again the James-Lange and the thalamic theories of emotion. Psychological Review, 38, 281–295.

    Article  Google Scholar 

  • Chay, T. R., & Rinzel, J. (1985). Bursting, beating, and chaos in an excitable membrane model. Biophysical Journal, 47, 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, J. D. (1982). Dimension, fractal, measures, and chaotic dynamics. In H. Haken (Ed.), Evolution of order and chaos. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Folkow, B. (1982). Physiological aspects of primary hypertension. Physiological Reviews, 62, 347–504.

    PubMed  CAS  Google Scholar 

  • Freeman, W. J., & Schneider, W. S. (1982). Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology, 19, 44–56.

    Article  PubMed  CAS  Google Scholar 

  • Gleick, J. (1987). Chaos: Making a new science. New York: Viking Penguin.

    Google Scholar 

  • Graf, K. E., & Elbert, T. (1989). Dimensional analysis of the waking EEG. In E. Basar & T. H. Bullock (Ed.), Brain Dynamics Progress and Perspectives (pp. 174–191). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica 9D, 183–208.

    Google Scholar 

  • Gray, C. M., & Skinner, J. E. (1988). Centrifugal regulation of neuronal activity in the olfactory bulb of the waking rabbit as revealed by reversible cryogenic blockade. Experimental Brain Research, 69, 378–386.

    Article  CAS  Google Scholar 

  • Gray, C. M., Freeman, W. J., & Skinner, J. E. (1984). Associative changes in the spatial amplitude patterns of rabbit olfactory EEG are norepinephrine-dependent. Society for Neuroscience Abstracts, 10, 121.

    Google Scholar 

  • Gray, C. M., Freeman, W. J., & Skinner, J. E. (1986). Chemical dependencies of learning in the rabbit olfactory bulb: Acquisition of the transient spatial pattern change depends on norepinephrine. Behavioral Neuroscience, 100, 585–596.

    Article  PubMed  CAS  Google Scholar 

  • Hess, B., & Markus, M. (1987). Order and chaos in biochemistry. Trends in Biochemical Science, 12, 45–48.

    Article  CAS  Google Scholar 

  • Hildebrandt, J. D., Sekura, R. D., Codina, J., Iyengar, R., Manclark, C. R., & Birnbaumer, L. (1983). Stimulation and inhibition of adenylyl cyclases is mediated by distinct proteins. Nature, 302, 706–709.

    Article  PubMed  CAS  Google Scholar 

  • Hopfield, J. J., & Tank, D. W. (1986). Computing with neural circuits: A model. Science, 233, 626–633.

    Article  Google Scholar 

  • Hopkins, W. F., & Johnston, D. (1984). Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus. Science, 226, 350–352.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, W. F., & Johnston, D. (1988). Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. Journal of Neurophysiology, 59, 667–687.

    PubMed  CAS  Google Scholar 

  • Krontiris-Litowitz, J., Skinner, J. E., & Birnbaumer, L. (1985). A muscarinic agonist (Ethmozine) prevents long-term potentiation in the hippocampal slice. Society for Neuroscience Abstracts, 11,781.

    Google Scholar 

  • Levitt, P., & Noebels, J. L. (1981). Mutant mouse tottering: Selective increase of locus ceruleus axons in a defined single-locus mutation. Proceedings of the National Academy of Sciences of the USA, 78, 4630–4634.

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch, L. S., & Sullivan, M. J. (1987). Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophysical Journal, 52, 979–988.

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch, L. S., Fischbarg, J., Koniarek, J. P., Todorova, I., & Wang, M. (1987). Fractal model of ion-channel kinetics. Biochimica et Biophysica Acta, 896, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: W. H. Freeman.

    Google Scholar 

  • Markus, M., Kuschmitz, E., & Hess, B. (1985). Properties of strange attractors in yeast glycolysis. Biophysical Chemistry, 22, 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Mayer-Kress, G. (1986). Introductory remarks. In G. Mayer-Kress (Ed.), Dimensions and entropies in chaotic systems (pp. 2–5). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Neurotech. (1988). Supporting data for the “Stress Analyzer.” Neurotech Laboratories, Inc., Suite 340, 1120 Medical Plaza, The Woodlands, Texas 77380.

    Google Scholar 

  • Packard, N. H., Crutchfield, J. P., Farmer, J. D., & Shaw, R. S. (1980). Geometry from a time-series. Physical Review Letters, 45, 712.

    Article  Google Scholar 

  • Reid, J. L., Lewis, P. J., Myers, M. G., & Dollery, C. T. (1974). Cardiovascular effects of intracerebroventricular d-, 1-, and dl-propranolol in the conscious rabbit. Journal of Pharmacology and Experimental Therapeutics, 188, 391–399.

    Google Scholar 

  • Roschke, J., & Basar, E. (1989). Correlation dimensions in various parts of cat and human brain in different states. In E. Basar & T. H. Bullock (Eds.), Brain dynamics progress and perspectives (pp. 131–148). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce English text. Complex Systems 1, 145–168.

    Google Scholar 

  • Shepherd, G. M. (1970). The olfactory bulb as a simple cortical system: Experimental analysis and functional implications. In F. O. Schmitt (Ed.), The neurosciences: Second study program (pp. 539–552). New York: Rockefeller University Press.

    Google Scholar 

  • Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences, 10, 161–173.

    Article  Google Scholar 

  • Skinner, J. E. (1971). Abolition of a conditioned, surface-negative, cortical potential during cryogenic blockade of the nonspecific thalamo-cortical system. Electroencephalography and Clinical Neurophysiology, 31, 197–209.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, J. E. (1984). Central gating mechanisms that regulate event-related potentials and behavior. In T. Elbert, B. Rockstroh, W. Lutzenberger, & N. Birbaumer (Eds.), Self-regulation of the brain and behavior (pp. 42–58). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Skinner, J. E. (1988). Brain involvement in cardiovascular disorders. In T. Elbert, W. Langosch, A. Steptoe, & D. Vaitl (Eds.), Behavioural medicine in cardiovascular disorders (pp. 229–253). London: Wiley.

    Google Scholar 

  • Skinner, J. E., & King G. L. (1980). Contribution of neuron dendrites to extracellular sustained potential shifts. In H. H. Kornhuber & L. Deecke (Eds.), Motivation motor and sensory processes of the brain. Progress in brain research (Vol. 54, pp. 89–102. Amsterdam: Elsevier/North-Holland Biomedical Press.

    Google Scholar 

  • Skinner, J. E., & Molnar, M. (1983). Event-related extracellular potassium-ion activity changes in the frontal cortex of the conscious cat. Journal of Neurophysiology, 49, 204–215.

    PubMed  CAS  Google Scholar 

  • Skinner, J. E., & Pratt, C. M. (1982). Ethmozin reduces the amplitude of the cerebral event-related slow potential in patients with ischemic heart disease. Abstracts of the American Heart Association.

    Google Scholar 

  • Skinner, J. E., & Reed, J. C. (1981). Blockade of a frontocortical-brainstem pathway prevents ventricular fibrillation of the ischemic heart in pigs. American Journal of Physiology, 240, H1156–H163.

    Google Scholar 

  • Skinner, J. E., & Yingling, C. D. (1976). Regulation of slow potential shifts in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal cortex. Electroencephalography and Clinical Neurophysiology, 40, 288–296.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, J. E., & Yingling, C. D. (1977). Central gating mechanisms that regulate event-related potentials and behavior: A neural model for attention. In J. E. Desmedt (Ed.), Progress in clinical neurophysiology (Vol. 1, pp. 30–69). Brussels: Karger-Basel.

    Google Scholar 

  • Skinner, J. E., Reed, J. C., Welch, K. M. A., & Nell, J. H. (1978). Cutaneous shock produces correlated shifts in slow potential amplitude and cyclic 3′, 5′-adenosine monophos-phate level in the parietal cortex of the conscious rat. Journal of Neurochemistry, 30, 699–704.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, J. E., Martin, J. L., Landisman, C. E., Mommer, M. M., Fulton, K., Mitra, M., Burton, W. D., & Saltzberg, B. (1988). Chaotic attractors in a model of neocortex: Dimensionalities of olfactory bulb surface potentials are spatially uniform and event-related. In E. Basar & T. H. Bullock (Eds.), Brain dynamics progress and perspectives (pp. 168–173). Dynamics of sensory and cognitive processing by the brain. Berlin: Springer-Verlag.

    Google Scholar 

  • Steptoe, A. (1988). The processes underlying long-term blood pressure reductions in essential hypertensives following behavioural therapy. In T. Elbert, W. Langosch, A. Steptoe, & D. Vaitl (Eds.), Behavioural medicine in cardiovascular disorders (pp. 139–148). London: Wiley.

    Google Scholar 

  • Szilagyi, J. E., Taylor, A. A., & Skinner, J. E. (1987). Cryoblockade of the ventromedial frontal cortex reverses hypertension in the rat. Hypertension, 9, 576–581.

    Article  PubMed  CAS  Google Scholar 

  • Tackett, R. L., Webb, J. G., & Privitera, P. J. (1985). Site and mechanism of the centrally mediated hypotensive action of propranolol. Journal of Pharmacology and Experimental Therapeutics, 235, 66–70.

    PubMed  CAS  Google Scholar 

  • Takens, F. (1981). Detecting strange attractors in turbulence. In Warwick (Ed.), Dynamical systems and Turbulence, 1980, Vol. 898 of Lecture Notes in Mathematics. Berlin: Springer-Verlag.

    Google Scholar 

  • Theiler, J. (1986). Spurious dimension from correlation algorithms applied to limited time-series data. Physical Review A, 34, 2427–2432.

    Article  PubMed  Google Scholar 

  • Theiler, J. (1988). Quantifying chaos: Practical estimation of the correlation dimension. Doctoral dissertation, California Institute of Technology, Pasadena.

    Google Scholar 

  • Thompson, J. W., Newton, P., Pocock, P. V., Cooper, R., Crow, H., McCallum, W. C., & Papakostopoulos, D. (1978). Preliminary study of pharmacology of contingent negative variation in man. In D. A. Otto (Ed.), Multidisciplinary perspectives in event-related brain potential research (pp. 25–55). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Watanabe, A. M., McConnaughey, M. M., Strawbridge, R. A., Fleming, J. W., Jones, L. R., & Besch, H. R., Jr. (1978). Muscarinic cholinergic receptor modulation of B-adrenergic receptor affinity for catecholamines. Journal of Biological Chemistry, 253, 4833–4836.

    PubMed  CAS  Google Scholar 

  • Williams, S. H., & Johnston, D. (1988a). Muscarin depresses an APV-sensitive form of LTP in CA3 hippocampal neurons. Abstracts Society for Neuroscience, 14, p. 564.

    Google Scholar 

  • Williams, S. H., & Johnston, D. (1988b). Muscarinic depression of long-term potentiation in CA3 hippocampal neurons. Science, 242, 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. A., & Leon, M. (1988). Spatial patterns of olfactory bulb single-unit responses to learned olfactory cues in young rats. Journal of Neurophysiology, 59, 1770–1782.

    PubMed  CAS  Google Scholar 

  • Wilson, D. A., Sullivan, R. M., & Leon, M. (1987). Single-unit analysis of postnatal olfactory learning: Modified olfactory bulb output response patterns to learned attractive odors. Journal of Neuroscience, 7, 3154–3162.

    PubMed  CAS  Google Scholar 

  • Yingling, C. D., & Skinner, J. E. (1976). Selective regulation of thalamic sensory relay nuclei by nucleus reticularis thalami. Electroencephalography and Clinical Neurophysiology, 41, 476–482.

    Article  PubMed  CAS  Google Scholar 

  • Yingling, C. D., & Skinner, J. E. (1977). Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. In J. E. Desmedt (Ed.), Progress in clinical neurophysiology (Vol. 1, pp. 70–96). Brussels: Karger-Basel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skinner, J.E., Mitra, M., Fulton, K. (1991). Low-Dimensional Chaos in a Simple Biological Model of Neocortex. In: Carlson, J.G., Seifert, A.R. (eds) International Perspectives on Self-Regulation and Health. The Springer Series in Behavioral Psychophysiology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2596-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2596-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2598-5

  • Online ISBN: 978-1-4899-2596-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics