Skip to main content

Cellular Growth and Differentiation during Embryogenesis and Fetal Development

The Role of Vitamin D

  • Chapter
Nutrient Regulation during Pregnancy, Lactation, and Infant Growth

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 352))

Abstract

Vitamin D2 and D3, the biologically significant forms of the vitamin, are produced in plants (D2 and D3) and skin (D3) from ultraviolet irradiation of ergosterol and 7-dehydrocholesterol respectively (DeLuca, 1980; Horst, 1985; Reichel et al., 1989; DeLuca et al., 1990). Once taken up from the skin (D3) or absorbed from the diet (D2 and D3), vitamin D is carried in the circulation bound to the vitamin D binding protein (DBP) and albumin (Haddad, 1979), and rapidly converted in the liver to 25-hydroxyvitamin D (25-OH-D) (Ponchon and DeLuca, 1969), the primary circulating form of the vitamin, through mitochondrial and microsomal cytochrome P-450 reactions that are weakly regulated by calcium and 1,25-dihydroxyvitamin D (1,25(OH)2D) (Djorkhem et al., 1980; Baran and Milne, 1983; Hayashi et al., 1986). 25-Hydroxyvitamin D acts as substrate for synthesis of 1,25(OH)2D, the most biologically active hormonal form of the vitamin (Reichel et al., 1989). Although 1,25(OH)2D synthesis has been demonstrated in bone cells, keratinocytes, placenta, embryonic intestine, aortic endothelial cells, activated macrophages and various abnormal cells (Dusso et al., 1990) the primary if not sole source of circulating 1,25(OH)2D in the nonpregnant animal is the kidney (Gray et al., 1971). During pregnancy placental and/or fetal production of 1,25(OH)2D can contribute to the maternal serum pool (Gray et al., 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amunudden, S., Sunde, M. L., DeLuca, H. F., Ikekawa, N., and Kobayashi, Y., 1983, Support of embryonic chick survival by vitamin D metabolites, Archiv. Biochem. Biophys. 226:666.

    Article  Google Scholar 

  • Bagi, C. M., and Miller, S. C., 1992, Dose related effects of 1,25(OH)2D on growth, modeling and morphology of fetal mouse metatarsals cultured in serum free medium, J. Bone Min. Res. 7:29.

    Article  CAS  Google Scholar 

  • Baker, A. R., McDonnell, D. P., Hughs, M., Crisp, T. M., Mangelsdorf, D. J., Haussier, M. R., Pike, J. W., Shine, J. and O’Malley, B. W., 1988, Cloning and expression of full length cDNA encoding human vitamin D receptor, Proc. Natl. Acad. Sci. USA. 85:3294.

    Article  PubMed  CAS  Google Scholar 

  • Baran, D. T., Sorenson, A. M., Shalhoub, V., Owen, T., Oberdorf, A., Stein, G., and Lian, J., 1991, 1,25-Dihydroxyvitamin D rapidly increases cytosolic calcium in clonal rat osteosarcoma cells lacking the vitamin D receptor, J. Bone Min. Res. 6:1269.

    Article  CAS  Google Scholar 

  • Baran, D. T. and Milne, M. L., 1983, 1,25-dihydroxyvitamin D inhibition of 25-hydroxyvitamin D production by the rachitic rat liver in vitro, Calcif. Tiss. Internl. 35:461.

    Article  CAS  Google Scholar 

  • Bikle, D. D., Nemanic, M. K., and Gee, E., 1986, 1,25-Dihydroxyvitamin D production by human keratinocytes: kinetics and regulation, J. Clin. Invest. 78:566.

    Google Scholar 

  • Birge, S. J., and Alpers, D. H., 1973, Stimulation of intestinal mucosal proliferation by vitamin D, Gastroenterology 64:977.

    PubMed  CAS  Google Scholar 

  • Bishop, J. E., and Norman, A. W., 1975, Studies on calciferol metabolism, Archiv. Biochem. Biophys. 167:769.

    Article  CAS  Google Scholar 

  • Bjorkhem, I., Holmberg, I., Oftebro, H., and Pedersen, J. I., 1980, Properties of a reconstituted vitamin D 25-hydroxylase from rat liver mitochondria, J. Biol. Chem. 255:5244.

    PubMed  CAS  Google Scholar 

  • Brommage, R. and DeLuca, H. F., 1984, Placental transport of calcium and phosphorus is not regulated by vitamin D, Am. J. Physiol. 246:F526.

    PubMed  CAS  Google Scholar 

  • Burmester, J. K., Maeda, N., and DeLuca, H. F., 1988, Isolation and expression of rat 1,25-dihydroxyvitamin D receptor cDNA, Proc. Natl. Acad. Sci. USA. 85:1005.

    Article  PubMed  CAS  Google Scholar 

  • Clements, M. R., and Fraser, D. R., 1988, Vitamin D supply to the rat fetus and neonate, J. Clin. Invest. 81:1768.

    Article  PubMed  CAS  Google Scholar 

  • Coty, W. A., Mcconkey, C. L., and Brown, T. A., 1981, A specific binding protein for 1,25(OH)2D in the chick embryo chorioallantoic membrane, J. Biol. Chem. 256:5545.

    PubMed  CAS  Google Scholar 

  • DeLuca, H. F., 1980, Vitamin D: revisited 1980, Clin. Endocrinol. Metab. 9:3.

    Article  CAS  Google Scholar 

  • DeLuca, H. F., Krisinger, J., and Darwish, H., 1990, The vitamin D system, Kid. Internl. 38:S2.

    Google Scholar 

  • Dusso, A., Finch, J., Delmez, J., Rapp, N., Lopez-Hilker, S., Brown, A., and Slatopolsky, E., 1990, Extrarenal production of calcitriol, Kid. Internl. 38:S36.

    Google Scholar 

  • Gray, R. W., Boyle, I., and DeLuca, H. F., 1971, Vitamin D metabolism: the role of kidney tissue, Science 172:1232.

    Article  PubMed  CAS  Google Scholar 

  • Gray, T. K., Lowe, W., and Lester, G. E., 1981, Vitamin D and pregnancy: the meternal-fetal metabolism of vitamin D, Endocrin. Rev. 2:264.

    Article  CAS  Google Scholar 

  • Haddad, J. G., Boisseau, V., and Avioli, L. V., 1971, Placental transfer of vitamin D and 25-hydroxycholecalciferol in the rat, J. Lab. Clin. Med. 77:908.

    PubMed  CAS  Google Scholar 

  • Haddad, J. G., 1979, Transport of vitamin D metabolites, Clin. Ortho. Relat. Res. 142:249.

    CAS  Google Scholar 

  • Halloran, B. P. and DeLuca, H. F., 1981a, Intestinal calcium transport: Evidence for two distinct mechanisms of action of 1,25(OH)2D, Archiv. Biochem. Biophys. 209:7.

    Article  CAS  Google Scholar 

  • Halloran, B. P., and DeLuca, H. F., 1981b, Effect of vitamin D deficiency on skeletal development during early growth in the rat, Arch. Biochem. Biophys. 209:7.

    Article  PubMed  CAS  Google Scholar 

  • Halloran, B. P., 1989, Is 1,25-Dihydroxyvitamin D required for reproduction?, Proc. Soc. Exp. Biol. Med. 191:227.

    Article  PubMed  CAS  Google Scholar 

  • Hart, L. E., and DeLuca, H. F., 1985, Effect of vitamin D metabolites on calcium and phosphorus metabolism in chick embryos, Am. J. Physiol. 248:E281.

    PubMed  CAS  Google Scholar 

  • Haussier, M. R., Mangelsdorf, D. J., Komm, B. S., Terpening, C. M., Yamaoka, K., Allegretto, E. A., Baker, A. R., Shine, J., McDonnell, D. P., Hughs, M., Weigel, N. L., O’Malley, B.W., and Pike, J. W., 1988, Molecular biology of the vitamin D hormone, Rec. Prog. Horm. Res. 44:263.

    Google Scholar 

  • Hayashi, S., Noshiro, M., and Okuda, K., Isolation of a cytochrome P-450 that catalyses the 25-hydroxylation of vitamin D from rat liver microsomes, J. Biochem. 99:1753.

    Google Scholar 

  • Hidiroglou, M. and Williams, C. J., 1981, Transfer of tritium labelled vitamin D in ovine placenta, Am. J. Vet. Res. 42:140.

    PubMed  CAS  Google Scholar 

  • Hillman, L. S., and Haddad, J. G., 1975, Perinatal vitamin D metabolism. II. Serial 25-hydroxyvitamin D concentrations in term and premature infants, J. Pediat. 86:928.

    Article  PubMed  CAS  Google Scholar 

  • Holick, M. F., Gray, T. K., and Anast, C. S., eds., 1983, Perinatal calcium and phosphorus metabolism, Elsevier, New York.

    Google Scholar 

  • Horiuchi, N., Clemens, T. L., Schiller, A. L. and Holick, M. F., 1985, Detection and developmental changes of the 1,25(OH)2D receptor concentration in mouse skin and intestine, J. Invest. Derm. 84:461.

    Article  PubMed  CAS  Google Scholar 

  • Horst, R. L., Reinhardt, T. A., Russell, J. R., and Napoli, J. L., 1984, The isolation and identification of vitamin D2 and vitamin D3 from Medicago sativa (alfalfa plant), Arch. Biochem. Biophys. 231:67.

    Article  PubMed  CAS  Google Scholar 

  • Hosomi, J., Hosoi, J., and Abe, E., 1983, Regulation of terminal differentiation of cultured mouse epidermal cells by 1,25(OH)2D, Endocrinology 113:1950.

    Article  PubMed  CAS  Google Scholar 

  • Howard, G. A., Turner, R. T., Sherrard, D. J., and Baylink, D. J., 1981, Human bone cells in culture metabolize 25-OH-D to 1,25(OH)2D and 24,25(OH)2D, J. Biol. Chem. 256:7738.

    PubMed  CAS  Google Scholar 

  • Hughes, M. R., Malloy, P. J., Kieback, D. G., Kesterson, R. A., Pike, J. W., Feldman, D., and O’Malley, D. W., 1988, Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets, Science 242:1702.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, R., Bolivar, I., Goltzman, D., and Hendy, G. N., 1989, Influence of calcium and 1,25(OH)2D on proliferation and proto-oncogene expression in primary culatures of bovine parathyroid cells, Endocrinology 125:935.

    Article  Google Scholar 

  • Kubota, M., Abe, E., Shinki, T., and Suda, T., 1981, Vitamin D metabolism and its possible role in the developing chick embryo, Biochem. J. 194:103.

    PubMed  CAS  Google Scholar 

  • Kumar, R., 1984, Metabolism of 1,25(OH)2D, Physiol. Rev. 64:478.

    PubMed  CAS  Google Scholar 

  • Liberman, U. A., Eil, C., and Marx, S. J., 1986, Receptor-positive hereditary resistance to 1,25(OH)2D: chromatography of hormone receptor complexes on deoxyribonucleic acid-cellulose shows two classes of mutation, J. Clin. Endocrinol Metab. 62:122.

    Article  PubMed  CAS  Google Scholar 

  • Manolagas, S. C., Hustmyer, F. G., and Xiao-peng, Y., 1990, Immunomodulating properties of 1,25(OH)2D, Kid. Internl. 38:S9.

    Google Scholar 

  • Marx, S. J., Liberman, U. A., Eil, C., Gamblin, G. T., DeGrange, D. A., and Balsan, S., 1984, Hereditary resistance to 1,25(OH)2D, Rec. Prog. Horm. Res. 40:589.

    PubMed  CAS  Google Scholar 

  • McDonnell, D. P., Mangelsdorf, D. J., Pike, J. W., Haussier, M. R., and O’Malley, B. W., 1987, Molecular cloning of complimentary DNA encoding the avian receptor for vitamin D, Science 235:1214.

    Article  PubMed  CAS  Google Scholar 

  • Merke, J., Milde, P., Lewicka, S., Hugel, U., Klaus, G., Mangelsdorf, D. J., Haussier, M. R., Rauterberg, E. W. and Ritz E., 1989, Identification and regulation of 1,25(OH)2D receptor activity and biosynthesis of 1,25(OH)2D. Studies in cultured bovine aortic endothelial cells and human dermal calpillaries, J. Clin. Invest. 83:1908.

    Article  Google Scholar 

  • Miller, S. C., Halloran, B. P, DeLuca, H. F., and Gee, W. S. S., 1983, Studies on the role of vitamin D in early skeletal development, mineralization and growth in the rat, Calcif. Tiss. Inter. 35:455–461.

    Article  CAS  Google Scholar 

  • Mitsuhashi, T., Morris, R. C., and Ives, H. E., 1991, 1,25-Dihydroxyvitamin D modulates growth of vascular smooth muscle cells, J. Clin. Invest. 87:1889.

    Article  PubMed  CAS  Google Scholar 

  • Mundy, G. R., 1990, The osteoclast, in “Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism”, 1st Edition, M. J. Favus, ed., William Byrd Press, Richmond.

    Google Scholar 

  • Nakada, M. and DeLuca, H. F., 1985, The appearance of 1,25(OH)2D receptor during chick embryonic development, Archiv. Biochem. Biophys. 238:129.

    Article  CAS  Google Scholar 

  • Narbaitz, R., Tsang, C. P. W. and Gründer, A. A., 1987, Effects of vitamin D deficiency in the chicken embryo, Calcif. Tiss. Inter. 40:109 (1987).

    Article  CAS  Google Scholar 

  • Nemere, I., Yoshimoto, Y., and Norman, A. W., 1984, Calcium transport in perfused duodena from normal chicks: enhancement within 14 minutes of exposure to 1,25-dihydroxyvitamin D, Endocrinology 115:1476.

    Article  PubMed  CAS  Google Scholar 

  • Neveh-Many, T. and Silver, J., 1990, Regulation of parathyroid gene expression by hypocalcemia, hypercalcemia and vitamin D in the rat, J. Clin. Invest. 86:1313.

    Article  Google Scholar 

  • Owen, T. A., Aronow, M. S., Barone, L. M., Bettencort, B., Stein, G. S., and Lian, J. B., Plieotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype, Endocrinology 128:1496.

    Google Scholar 

  • Paulson, S. K. and DeLuca, H. F., 1985, Subcellular location and properties of rat renal 25-hydroxyvitamin D-l-hydroxylase, J. Biol. Chem. 260:11488.

    PubMed  CAS  Google Scholar 

  • Pike, J. W., 1991, Vitamin D receptors: structure and function in transcription, Ann. Rev. Nutr. 11:189.

    Article  CAS  Google Scholar 

  • Pillai, S., Bikle, D. D., and Elias, P. M., 1988a, Vitamin D and epidermal differentiation: evidence for a role of endogenously produced vitamin D metabolites in keratinocyte differentiation, Skin Pharmacol. 1:149.

    Article  PubMed  CAS  Google Scholar 

  • Pillai, S., Bikle, D. D., and Elias, P. M., 1988b, 1,25-Dihydroxyvitamin D production and receptor binding in human keratinocytes correlates with differentiation, J. Biol. Chem. 263:5390.

    PubMed  CAS  Google Scholar 

  • Pillai, S. and Bikle, D. D., 1991, Role of intracellular free calcium in the cornified envelope formation of keratinocytes: differences in the mode of action of extracellular calcium and 1,25(OH)2D, J. Cell Physiol. 146:94.

    Article  PubMed  CAS  Google Scholar 

  • Ponchon, A. and DeLuca, H. F., 1969, The role of the liver in the metabolism of vitamin D, J. Clin. Invest. 48:1273.

    Article  PubMed  CAS  Google Scholar 

  • Puzas, J. E., Turner, R. T., Howard, G. A., and Baykink, D. J., 1983, Cells isolated from embryonic intestine synthesize 1,25(OH)2D and 24,25(OH)2D in culture, Endocrinology 112:378.

    Article  PubMed  CAS  Google Scholar 

  • Puzas, J. E., 1990, The osteoblast, in “Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism”, 1st Edition, M. J. Favus, ed., William Byrd Press, Richmond.

    Google Scholar 

  • Rebut-Bonneton, C., Memignon, J., Cancela, L. and Miravet, L., 1985, Effect of 25-OH-D and 1,25(OH)2D maternal loads on maternal and fetal vitamin D metabolite levels in the rat, Repro. Nutr. Devel. 25:583.

    Article  CAS  Google Scholar 

  • Reichel, H. and Norman, A. W., 1989a, Systemic effects of vitamin D, Ann. Rev. Med. 40:71.

    Article  PubMed  CAS  Google Scholar 

  • Reichel, H., Koeffler, H. P., and Norman, A. W., 1989b, The role of the vitamin D endocrine system in health and disease, New Engl. J. Med. 320:980.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R., 1983, Vitamin D metabolism in the pregnent large animal, in “Perinatal Calcium and Phosporus Metabolism”, M. F. Holick, C. S. Anast and T. K. Gray, eds., Elsevier, New York.

    Google Scholar 

  • Spielvogel, A. M., Farley, R. D., and Norman, A. W., 1972, Studies on the mechanism of action of calciferol, Exp. Cell Res. 74:359.

    Article  PubMed  CAS  Google Scholar 

  • Stern, P. H., 1990, Vitamin D and bone, Kid. Internl. 38:S17.

    Google Scholar 

  • Stumpf, W. E., and Denny, M. E., 1989, Vitamin D (soltriol), light and reproduction, Am. J. Obstet. Gynecol. 161:1375.

    Article  PubMed  CAS  Google Scholar 

  • Suda, T., Shinki, T., and Takahashi, N., 1990, The role of vitamin D in bone and intestinal cell differentiation, Ann. Rev. Nutr. 10:195.

    Article  CAS  Google Scholar 

  • Sunde, M. L., Turk, C. M., and DeLuca, H. F., 1978, The essentiality of vitamin D metabolites for embryonic chick development, Science 200:1067.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, A., Merke, J., Beier, E., Mall, W., and Ritz, E., 1989, 1,25-Dihydroxyvitamin D inhibits parathryoid cell proliferation in experimental uremia, Kid. Internl. 35:1049.

    Article  CAS  Google Scholar 

  • Turner, R. T., Graves, J. S., and Bell, N. H., 1987, Regulation of 25-OH-D metabolism in the chick embryo, Am. J. Physiol. 252:E38.

    PubMed  CAS  Google Scholar 

  • Walters, M. R., 1992, Newly identified actions of the vitamin D endocrine system, Endocrin. Rev., in press.

    Google Scholar 

  • Wronski, T. J., Halloran, B. P., Bikle, D. D., Globus, R. K., and Morey-Holton, E. R., 1986, Chronic administration of 1,25(OH)2D: increased bone but impaired mineralization, Endocrinology 119:2580.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Halloran, B.P. (1994). Cellular Growth and Differentiation during Embryogenesis and Fetal Development. In: Allen, L., King, J., Lönnerdal, B. (eds) Nutrient Regulation during Pregnancy, Lactation, and Infant Growth. Advances in Experimental Medicine and Biology, vol 352. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2575-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2575-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2577-0

  • Online ISBN: 978-1-4899-2575-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics