Skip to main content

Alternatives to Oriented Crystallization on Amorphous Substrates

  • Chapter
Oriented Crystallization on Amorphous Substrates

Part of the book series: Microdevices ((MDPF))

  • 199 Accesses

Abstract

Chapters 3, 4, and 5 described a variety of approaches, methods, and techniques that allow preparation of silicon films (and, in general, semiconductor films) on amorphous substrates by means of crystallization processes. In view of the broad interest in semiconductor films on insulating substrates, alternatives were and are being developed that have their own advantages and disadvantages with respect to these crystallization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comparison of Thin Film Transistor and SOI Technologies (H. W. Lam and M. J. Thompson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 33, North-Holland, Amsterdam (1984).

    Google Scholar 

  2. Layered Structures, Epitaxy, and Interfaces (J. M. Gibson and L. R. Dawson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 37, Materials Research Society Press, Pittsburgh (1984).

    Google Scholar 

  3. Energy Beam-Solid Interactions and Transient Thermal Processing (D. K. Biegelsen, G. A. Rozgonyi, and C. V. Shank, eds.), Proc. Mater. Res. Soc. Symp., Vol. 35, Materials Research Society Press, Pittsburgh (1985).

    Google Scholar 

  4. Semiconductor-on-Insulator and Thin Film Transistor Technology (A. Chiang, M. W. Geis, and L. Pfeiffer, eds.), Proc. Mater. Res. Soc. Symp., Vol. 53, Materials Research Society Press, Pittsburgh (1986).

    Google Scholar 

  5. Heteroepitaxy on Silicon-II (J. C. C. Fan, J. M. Phillips, and B.-Y. Tsaur, eds.), Proc. Mater. Res. Soc. Symp., Vol. 91, Materials Research Society Press, Pittsburgh (1987).

    Google Scholar 

  6. Silicon-on-Insulator and Buried Metals in Semiconductors (J. C. Sturm, C. K. Chen, and L. Pfeiffer, eds.), Proc. Mater. Res. Soc. Symp., Vol. 107, Materials Research Society Press, Pittsburgh (1988).

    Google Scholar 

  7. Selected Topics in Electronic Materials, Extended Abstracts of Materials Research Society Symposium, Boston, 1988.

    Google Scholar 

  8. S. S. Lau, S. Matteson, J. W. Mayer, P. Revesz, J. Guilai, J. Roth, T. W. Sigmon, and T. Gass, Improvement of crystalline quality of epitaxial Si layers by ion-implantation techniques, Appl. Phys. Lett. 34, 76–78 (1979).

    Article  Google Scholar 

  9. T. Inoue and T. Yoshii, Crystalline disorder reduction and defect-type change in silicon on sapphire films by silicon implantation and subsequent thermal annealing, Appl. Phys. Lett. 36, 64–66 (1980).

    Article  Google Scholar 

  10. I. Golecki and M.-A. Nicolet, Improvement of crystalline quality of epitaxial silicon-on-sapphire by ion implantation and furnace regrowth, Solid State Electron. 23, 803–806 (1980).

    Article  Google Scholar 

  11. J. Amano and K. Carey, A novel three-step process for low-defect-density silicon on sapphire, Appl. Phys. Lett. 39, 163–165 (1981).

    Article  Google Scholar 

  12. I. Golecki, The current status of silicon-on-sapphire and other heteroepitaxial silicon-on-insulator technologies, in: Comparison of Thin Film Transistor and SOI Technologies (H. W. Lam and M. J. Thompson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 33, pp. 3–23, North-Holland, Amsterdam (1984).

    Google Scholar 

  13. P. K. Vasudev and D. C. Mayer, Characterization of CMOS devices in 0.5 µm silicon-on-sapphire films modified by solid phase epitaxy and regrowth (SPEAR), in: Comparison of Thin Film Transistor and SOI Technologies (H. W. Lam and M. J. Thompson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 33, pp. 35–39, North-Holland, Amsterdam (1984).

    Google Scholar 

  14. P. K. Vasudev, Solid phase epitaxial recrystallization of SOS, with applications to submicrometer CMOS and bipolar devices, in: Semiconductor-on-Insulator and Thin Film Transistor Technology (A. Chiang, M. W. Geis, and L. Pfeiffer, eds.), Proc. Mater. Res. Soc. Symp., Vol. 53, pp. 121–127, Materials Research Society Press, Pittsburgh (1986).

    Google Scholar 

  15. J. Lagowski, L. Jastrzebski, M. T. Duffy, C. Magee, and G. W. Cullen, The characterization of heteroepitaxial silicon by surface photovoltage technique: Improved properties of SOS films resulting from damage and solid-state regrowth, J. Electrochem. Soc. 131, 634–636 (1984).

    Article  Google Scholar 

  16. M. A. Parker, R. Sinclair, and T. W. Sigmon, Silicon on sapphire of single crystal quality obtained by double solid phase epitaxial regrowth, in: Layered Structures, Epitaxy, and Interfaces (J. M. Gibson and L. R. Dawson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 37, pp. 211–216, Materials Research Society Press, Pittsburgh (1984). See also: Appl. Phys. Lett. 47, 626–628 (1985).

    Google Scholar 

  17. A. Hodge, A. G. Cullis, and N. G. Chew, Solid-phase epitaxial regrowth of ion-implanted silicon on sapphire using rapid thermal annealing, in: Energy Beam-Solid Interactions and Transient Thermal Processing (D. K. Biegelsen, G. A. Rozgonyi, and C. V. Shank, eds.), Proc. Mater. Res. Soc. Symp., Vol. 35, pp. 393–399, Materials Research Society Press, Pittsburgh (1985).

    Google Scholar 

  18. T. Yoshii, S. Taguchi, and H. Tango, Improvement of crystalline quality of silicon films on sapphire by implantation and solid-state epitaxy, in: Layered Structure and Interface Kinetics (S. Furukawa, ed.), pp. 129–135, Reidel, Dordrecht (1985).

    Google Scholar 

  19. R. E. Reedy and G. A. Garcia, Thin (100 nm) SOS for application to beyond VLSI microelectronics, in: Silicon-on-Insulator and Buried Metals in Semiconductors (C. K. Chen, P. L. F. Hemment, J. C. Sturm, and L. Pfeiffer, eds.), Proc. Mater. Res. Soc. Symp., Vol. 107, pp. 365–376, Materials Research Society Press, Pittsburgh (1988).

    Google Scholar 

  20. L. Pfeiffer, J. M. Phillips, K. E. Luther, K. W. West, J. L. Batstone, F. A. Stevie, and J. E. A. Maurits, Rapid thermal processing to improve the epitaxy of (100) silicon on (1102) sapphire, Appl. Phys. Lett. 50, 466–468 (1987).

    Article  Google Scholar 

  21. E. D. Richmond, G. Campisi, and M. Twigg, Temperature dependence of rapid thermal annealing of silicon on sapphire, in: Silicon-on-Insulator and Buried Metals in Semiconductors (C. K. Chen, P. L. F. Hemment, J. C. Sturm, and L. Pfeiffer, eds.), Proc. Mater. Res. Soc. Symp., Vol. 107, pp. 377–382, Materials Research Society Press, Pittsburgh (1988).

    Google Scholar 

  22. M. Ishida, H. Ohyama, H. Wakamatsu, Y. Yasuda, T. Nishinaga, and T. Nakamura, Epitaxial growth of Si over amorphous buffer layer sputtered on sapphire substrate, in: Layered Structures and Interface Kinetics (S. Furukawa, ed.), pp. 99–111, Reidel, Dordrecht (1985).

    Google Scholar 

  23. M. Ishida, Y. Yasuda, H. Ohyama, H. Wakamatsu, H. Abe, and T. Nakamura, Growth and properties of Si films on sapphire with predeposited amorphous Si layers, J. Appl. Phys. 59, 4073–4078 (1986).

    Article  Google Scholar 

  24. D. J. Dumin, S. Dabral, M. Freytag, P. J. Robertson, G. P. Carver, and D. B. Novotny, Growth and properties of high-quality very-thin silicon-on-sapphire (SOS) films, J. Electron. Mater. 18, 53–57 (1988); also: High-mobility CMOS transistors fabricated on very thin SOS films, IEEE Trans. Electron Devices ED-36, 596–598 (1989).

    Article  Google Scholar 

  25. I. Golecki, R. L. Maddox, and K. M. Stika, Neutralization of electrically active aluminium in recrystallized silicon-on-sapphire films, J. Electron. Mater. 13, 373–399 (1984).

    Article  Google Scholar 

  26. R. F. C. Farrow, P. W. Sullivan, G. M. Williams, G. R. Jones, and D. C. Cameron, MBE-grown fluoride films: A new class of epitaxial dielectrics, J. Vac. Sci. Technol. 19, 415–420 (1981).

    Article  Google Scholar 

  27. T. Asano and H. Ishiwara, Formation of an epitaxial Si/insulator/Si structure by vacuum deposition of CaF2 and Si, Jpn. J. Appl. Phys. Suppl.20–1, 187–191 (1982).

    Google Scholar 

  28. A. Munoz-Yague and C. Fontaine, Status of fluoride-semiconductor heteroepitaxial growth, in: Growth of Compound Semiconductor Structures (A. Madhukar, ed.), Proc. SPIE, Vol. 944, pp. 130–138. Society of Photo-Optical Instrumentation Engineers Press, Bellingham (1988).

    Chapter  Google Scholar 

  29. J. M. Phillips, J. L. Batstone, and J. C. Hensel, New directions in the growth of epitaxial insulators and metals on silicon, in: Heteroepitaxy on Silicon: Fundamentals, Structure, and Devices (H. K. Choi, R. Hull, H. Ishiwara, and R. J. Nemanich, eds.), Proc. Mater. Res. Soc. Symp., Vol. 116, pp. 403–412, Materials Research Society Press, Pittsburgh (1988).

    Google Scholar 

  30. T. Asano, H. Ishiwara, K. Orihara, and S. Furukawa, Improvement of crystalline quality of Si films on CaF2/Si structures by ion implantation and solid phase recrystallization, Jpn. J. Appl. Phys. 22, L118—L120 (1983).

    Article  Google Scholar 

  31. T. Asano and H. Ishiwara, Epitaxial growth of Si films on CaF2/Si structures with thin Si layers predeposited at room temperatures, J. Appl. Phys. 55, 3566–3570 (1984).

    Article  Google Scholar 

  32. T. Asano and H. Ishiwara, Epitaxial growth of group-IIa fluorides/silicon heterostructures, in: Layered Structures and Interface Kinetics (S. Furukawa, ed.), pp. 199–219, Reidel, Dordrecht (1985).

    Google Scholar 

  33. H. Ishiwara, T. Asano, H. C. Lee, Y. Kuriyama, K. Seki, and S. Furukawa, Heteroepitaxy of Si, Ge, and GaAs films on GaF2/Si structures, in: Heteroepitaxy on Silicon Technology (J. C. C. Fan and J. M. Poate, eds.), Proc. Mater. Res. Soc. Symp., Vol. 67, pp. 105–113, Materials Research Society Press, Pittsburgh (1986).

    Google Scholar 

  34. N. Hirashita, M. Sasaki, H. Onoda, S. Hagiwara, and S. Ushio, Thermal stability of heteroepitaxial CaF2/Si and Si/CaF2/Si structures, in: Layered Structures, Epitaxy, and Interfaces (J. M. Gibson and L. R. Dawson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 37, pp. 157–161, Materials Research Society Press, Pittsburgh (1984).

    Google Scholar 

  35. M. Sasaki and H. Onoda, Molecular-beam epitaxy of Si on a CaF2/Si(100) structure, J. Appl. Phys. 59, 3104–3109 (1986).

    Article  Google Scholar 

  36. R. W. Fathauer, N. Lewis, E. L. Hall, and L. J. Schowalter, Heteroepitaxy of semiconductor on insulator structures: Si and Ge and CaF2/Si(111), J. Appl. Phys. 60, 3886–3894 (1986).

    Article  Google Scholar 

  37. M. Barkai, Y. Lereah, E. Grunbaum, and G. Deutscher, Epitaxial growth of silicon and germanium films on CaF2/Si, Thin Solid Films 139, 287–297 (1986).

    Article  Google Scholar 

  38. T. Asano and H. Ishiwara, Epitaxial growth of Ge films onto CaF2/Si structures, Jpn. J. Appl. Phys. 21, L630-L632 (1982).

    Article  Google Scholar 

  39. S. Kanemaru, H. Ishiwara, T. Asano, and S. Furukawa, Improvement of the quality of Ge films on CaF2/Si(111) structures by predeposited thin Ge layers, Surf. Sci. 174, 666–670 (1986).

    Article  Google Scholar 

  40. H. C. Lee, T. Asano, H. Ishiwara, and S. Furukawa, Optimization of the growth conditions of heteroepitaxial GaAs films on CaF2/Si structures, Jpn. J. Appl. Phys. 25, L595-L597 (1986).

    Article  Google Scholar 

  41. S. Siskos, C. Fontaine, and A. Munoz-Yague, GaAs/(Ca • Sr) F2/(001) GaAs lattice-matched structures grown by molecular beam epitaxy, Appl. Phys. Lett. 44, 1146–1148 (1984).

    Article  Google Scholar 

  42. K. Tsutsui, H. Ishiwara, and S. Furukawa, Lattice matching at elevated substrate temperature for growth of GaAs films with good electrical properties on Cax Sr 1_ x F2/GaAs(100) structures, Appl. Phys. Lett. 48, 587–589 (1986).

    Article  Google Scholar 

  43. K. Tsutsui, H. Ishiwara, and S. Furukawa, Antiphase disorder in epitaxial GaAs films grown on Cax Sr 1_ x F2(100) with higher crystallographic symmetry, Appl. Phys. Lett. 49, 1705–1707 (1986).

    Article  Google Scholar 

  44. C. W. Tu, S. R. Forrest, and W. D. Johnston, Epitaxial InP/fluoride/InP(001) double heterostructures grown by molecular beam epitaxy, Appl. Phys. Lett. 43, 569–571 (1983).

    Article  Google Scholar 

  45. H. Zogg and M. Hüppi, Growth of high quality epitaxial PbSe onto Si using (Ca, Ba)F2 buffer layer, Appl. Phys. Lett. 47, 133–135 (1985).

    Article  Google Scholar 

  46. H. Zogg, S. Blunier, and J. Masek, Progress in compound-semiconductor-on-silicon-heteroepitaxy with fluoride buffer layers, J. Electrochem. Soc. 136, 775–779 (1989).

    Article  Google Scholar 

  47. J. Amano, T. Yoshida, and K. Shono, Crystalline characterization of Si/BP/Si heteroepitaxy, Appl. Phys. Lett. 45, 1112–1114 (1984).

    Article  Google Scholar 

  48. M. Morita, H. Fukamoto, T. Imura, Y. Osaka, and M. Ichihara, Growth of crystalline zirconium dioxide films on silicon, J. Appl. Phys. 58, 2407–2409 (1985).

    Article  Google Scholar 

  49. R. F. C. Farrow, S. Sinharoy, R. A. Hoffman, J. H. Rieger, M. J. Takei, J. C. Greggi, S. Wood, and T. A. Temofonte, MBE growth of lanthanide trifluorides on silicon (111), in: Layered Structures, Epitaxy, and Interfaces (J. M. Gibson and L. R. Dawson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 37, pp. 181–185, Materials Research Society Press, Pittsburgh (1984).

    Google Scholar 

  50. S. Sinharoy, R. A. Hoffman, A. Rohatgi, R. F. C. Farrow, and J. H. Rieger, Epitaxial growth of LaF3 on GaAs (111), J. Appl. Phys. 59, 273–275 (1986).

    Article  Google Scholar 

  51. Y. Kado and Y. Arita, Heteroepitaxial growth of SrO films on Si substrates, J. Appl. Phys. 61, 2398–2400 (1987).

    Article  Google Scholar 

  52. T. R. Smith, J. M. Phillips, W. M. Augustyniak, and P. J. Stiles, Fabrication of metal-epitaxial insulator-semiconductor field-effect transistors using MBE of CaF2 on Si, Appl. Phys. Lett. 45, 907–909 (1984).

    Article  Google Scholar 

  53. T. Asano, Y. Kuriyama, and H. Ishiwara, Fabrication of MOSFET’s in Si/CaF2/Si heteroepitaxial structures, Electron. Lett. 21, 386–387 (1985).

    Article  Google Scholar 

  54. K. Tsutsui, T. Nakazawa, T. Asano, I. Ishiwara, and S. Furukawa, MESFET’s in a GaAs-oninsulator structure, IEEE Electron Device Lett. EDL-8, 277–279 (1987).

    Article  Google Scholar 

  55. D. K. Biegelsen, F. A. Ponce, A. J. Smith, and J. C. Tramontana, Initial stages of epitaxial growth of GaAs on (100) silicon, J. Appl. Phys. 61, 1856–1859 (1987).

    Article  Google Scholar 

  56. R. Hull and A. Fischer-Colbrie, Nucleation of GaAs on Si: Experimental evidence for a threedimensional critical transition, Appl. Phys. Lett. 50, 851–853 (1987).

    Article  Google Scholar 

  57. L. J. Schowalter, R. W. Fathauer, R. P. Goehner, L. G. Turner, R. W. DeBlois, S. Hashimoto, J.-L. Peng, W. M. Gibson, and J. P. Krusius, Epitaxial growth and characterization of CaF2 on Si, J. Appl. Phys. 58, 302–308 (1985).

    Article  Google Scholar 

  58. H. Heral, L. Bernard, A. Rocher, C. Fontaine, and A. Munoz-Yague, High-resolution electron microscopy study of (Ca, Sr) F2/GaAs grown by molecular-beam epitaxy, J. Appl. Phys. 61, 2410–2412 (1987).

    Article  Google Scholar 

  59. L. Pfeiffer, J. M. Phillips, T. P. Smith, W. M. Augustyniak, and K. W. West, Use a rapid anneal to improve CaF2 : Si(100) epitaxy, Appl. Phys. Lett. 46, 947–949 (1985).

    Article  Google Scholar 

  60. J. M. Philips, L. Pfeiffer, D. C. Joy, T. P. Smith, J. M. Gibson, W. M. Augustyniak, and K. W. West, Post-growth annealing treatments of epitaxial CaF2 on Si(100), J. Electrochem. Soc. 133, 224–227 (1986).

    Article  Google Scholar 

  61. S. Kanemaru, H. Ishiwara, and S. Furukawa, A novel heteroepitaxy method of Ge films on CaF2 by electron-beam exposure, J. Appl. Phys. 63, 1060–1064 (1988).

    Article  Google Scholar 

  62. H. C. Lee, T. Asano, H. Ishiwara, and S. Furukawa, Electron-beam exposure (EBE) and epitaxy of GaAs films on CaF2/Si structures, Jpn. J. Appl. Phys. 27, Pt. 1, 1616–1625 (1988); also: S. Furukawa, H. Ishiwara, T. Asano, and H. C. Lee, Electron-beam exposure heteroepitaxial growth of GaAs/CaF2/Si structures, in: Growth of Compound Semiconductor Structures (A. Madhukar, ed.), Proc. SPIE, Vol. 944, pp. 139–145. Society of Photo-Optical Instrumentation Engineers Press, Bellingham (1988).

    Article  Google Scholar 

  63. H. Zogg, Strain relief in epitaxial fluoride buffer layers for semiconductor heteroepitaxy, Appl. Phys. Lett. 49, 933–935 (1986).

    Article  Google Scholar 

  64. Ion Implantation and Ion Beam Processing of Materials (G. K. Hubler, O. W. Holland, C. R. Clayton, and C. W. White, eds.), Proc. Mater. Res. Soc. Symp., Vol. 27, North-Holland, Amsterdam (1984).

    Google Scholar 

  65. Buried Oxide and Nitride by Implantation, Part III, in: Semiconductor-on-Insulator and Thin Film Transistor Technology (A. Chiang, M. W. Geis, and L. Pfeiffer, eds.), Proc. Mater. Res. Soc. Symp., Vol. 53, pp. 205–286, Materials Research Society Press, Pittsburgh (1986).

    Google Scholar 

  66. H. W. Lam and R. F. Pinizzotto, Silicon-on-insulator by oxygen ion implantation, J. Cryst. Growth 63, 554–558 (1983).

    Article  Google Scholar 

  67. R. F. Pinizzotto, A review of silicon-on-insulator formation by oxygen ion implantation, in: Comparison of Thin Film Transistor and SOI Technologies (H. W. Lam and M. J. Thompson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 33, pp. 265–274, North-Holland, Amsterdam (1984).

    Google Scholar 

  68. K. Das, G. Shorthouse, J. Butcher, and K. V. Anand, Silicon-on-insulator structures using high dose oxygen implantation to form buried oxide film, Microelectron. J. 14(6), 88–107 (1983).

    Article  Google Scholar 

  69. P. L. F. Hemment, Silicon-on-insulator by high dose implantation, in: Comparison of Thin Film Transistor and SOI Technologies (H. W. Lam and M. J. Thompson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 33, pp. 41–51, North-Holland, Amsterdam (1984).

    Google Scholar 

  70. P. L. F. Hemment, Silicon-on-insulator formed by O+ and N+ ion implantation, in: Semiconductor-on-Insulator and Thin Film Transistor Technology (A. Chiang, M. W. Geis, and L. Pfeiffer, eds.), Proc. Mater. Res. Soc. Symp., Vol. 53, pp. 207–221, Materials Research Society Press, Pittsburgh (1986).

    Google Scholar 

  71. P. L. F. Hemment, R. F. Peart, M. F. Yao, K. G. Stephens, R. J. Chater, J. A. Kilner, C. D. Meekison, G. R. Booker, and R. P. Arrowsmith, High quality silicon on insulator structures formed by the thermal redistribution of implanted nitrogen, Appl. Phys. Lett. 46, 952–954 (1985).

    Article  Google Scholar 

  72. K. E. Reeson, P. L. F. Hemment, R. F. Peart, C. D. Meekison, G. R. Booker, and J. Davis, Formation of multilayer Si3N4 structures by nitrogen ion implantation, Electron. Lett. 22, 467–469 (1986).

    Article  Google Scholar 

  73. G. K. Celler, P. L. F. Hemment, K. W. West, and J. M. Gibson, High-quality Si-on-SiO2 films by large dose oxygen implantation and lamp annealing, Appl. Phys. Lett. 48, 532–534 (1986).

    Article  Google Scholar 

  74. K. Izumi, Y. Omura, and T. Sakai, SIMOX technology and its application to CMOS LSI’s, J. Electron. Mater. 12, 845–861 (1983).

    Article  Google Scholar 

  75. J. Petruzzello, T. F. McGee, H. M. Frommer, V. Rumennik, P. A. Walters, and C. J. Chou, Transmission electron microscopy and Auger electron spectroscopy of silicon-on-insulator structure prepared by high-dose implantation of nitrogen, J. Appl. Phys. 58, 4605–4613 (1985).

    Article  Google Scholar 

  76. L. Nesbit, S. Stiffler, G. Slusser, and H. Vinton, Formation of silicon-on-insulator structures by implanted nitrogen, J. Electrochem. Soc. 132, 2713–2721 (1985).

    Article  Google Scholar 

  77. J. Stoemenos, C. Jaussaud, M. Bruel, and J. Margall, New conditions for synthesizing SOI structures by high dose oxygen implantation, J. Cryst. Growth 73, 546–550 (1985).

    Article  Google Scholar 

  78. J. Stoemenos, J. Margail, C. Jaussaud, M. Dupuy, and M. Bruel, SiO2 buried layer formation by subcritical dose oxygen ion formation, Appl. Phys. Lett. 48, 1470–1472 (1986).

    Article  Google Scholar 

  79. J. Stoemenos and J. Margail, Nucleation and growth of oxide precipitates in silicon implanted with oxygen, Thin Solid Films 135, 115–127 (1986).

    Article  Google Scholar 

  80. A. Mogro-Compero, R. P. Love, N. Lewis, E. L. Hall, and M. D. McConnell, High-temperature annealing of implanted buried oxide in silicon, J. Appl. Phys. 60, 2103–2105 (1986).

    Article  Google Scholar 

  81. W. Skorupa, U. Kreissig, H. Oertel, and H. Bartsch, Properties of silicon layers on buried silicon nitride produced by ion implantation, Vacuum 36, 933–937 (1986).

    Article  Google Scholar 

  82. W. Skorupa, K. Wollschlager, U. Kreissig, R. Grotzschel, and H. Bartsch, Properties of ion beam synthesized buried silicon nitride layers with rectangular nitrogen profiles, Nucl. Instrum. Methods Phys. Res. B19/20, 285–289 (1987).

    Article  Google Scholar 

  83. B.-Y. Mao, P.-H. Chiang, H. W. Lam, B. W. Shen, and J. A. Keenan, Microstructure of high-temperature annealed buried oxide silicon-on-insulator, Appl. Phys. Lett. 48, 794–796 (1986).

    Article  Google Scholar 

  84. P.-H. Chiang and B.-Y. Mao, High-resolution transmission electron microscopy of silicon-oninsulator formed by high dose oxygen implantation, Appl. Phys. Lett. 50, 152–154 (1987).

    Article  Google Scholar 

  85. P.-H. Chiang, C. Slawinski, B.-Y. Mao, and H. W. Lam, Microstructural characterization of nitrogen-implanted silicon-on-insulator, J. Appl. Phys. 61, 166–174 (1987).

    Article  Google Scholar 

  86. K. J. Reeson, P. L. F. Hemment, C. D. Meekison, G. R. Booker, J. A. Kilner, R. J. Chater, J. R. Davis, and G. K. Celler, Improved quality Si-on-Si3N4 structures by ion beam synthesis and lamp annealing, Appl. Phys. Lett. 50, 1882–1884 (1987).

    Article  Google Scholar 

  87. C.-E. D. Chen and Rad-Hard SOI Project Team, Buried oxide SOI: Materials, devices, and VLSI circuits, in: Silicon-on-Insulator and Buried Metals in Semiconductors (C. K. Chen, P. L. F. Hemment, J. C. Sturm, and L. Pfeiffer, eds.), Proc. Mater. Res. Soc. Symp., Vol. 107, pp. 309–315, Materials Research Society Press, Pittsburgh (1988).

    Google Scholar 

  88. F. Mamavar, E. Cortesi, and P. Sioshansi, Recent advances in SIMOX defect reduction and novel structures, in: Selected Topics in Electronic Materials, Extended Abstracts of Materials Research Society Symposium, Boston, Nov. 30—Dec. 2, 1988, (B. R. Appleton, D. K. Biegelsen, W. L. Brown, and J. A. Knapp, eds.), Materials Research Society Press, Pittsburgh, pp. 109–115 (1988).

    Google Scholar 

  89. Electronics, No. 34, October 30, 1986, p. 48.

    Google Scholar 

  90. T. Unagami and K. Kato, Study of the injection type IPOS scheme, Jpn. J. Appl. Phys. 16, 1635–1640 (1977).

    Article  Google Scholar 

  91. T. Unagami and M. Seki, Structure of porous silicon layer and heat-treatment effect, J. Electrochem. Soc. 125, 1339–1344 (1978).

    Article  Google Scholar 

  92. K. Imai, A new dielectric isolation method, Solid State Electron. 24, 159–164 (1981).

    Article  Google Scholar 

  93. K. Imai, H. Unno, and H. Takaoka, Crystalline quality of silicon layer formed by FIPOS technology, J. Cryst. Growth 63, 547–553 (1983).

    Article  Google Scholar 

  94. K. Imai and H. Unno, FIPOS (full isolation by porous oxide silicon) technology and its application to LSI’s, IEEE Trans. Electron Devices ED-31, 297–302 (1984).

    Article  Google Scholar 

  95. R. C. Frye, The formation of porous silicon and its applications to dielectric isolation, in: Comparison of Thin Film Transistor and SOI Technologies (H. W. Lam and M. J. Thompson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 33, pp. 53–62, North-Holland, Amsterdam (1984).

    Google Scholar 

  96. H. Baumgart, R. C. Frye, F. Phillipp, and H. J. Leamy, Dielectric isolation using porous silicon, in: Comparison of Thin Film Transistor and SOI Technologies (H. W. Lam and M. J. Thompson, eds.), Proc. Mater. Res. Soc. Symp., Vol. 33, pp. 63–68, North-Holland, Amsterdam (1984).

    Google Scholar 

  97. L. A. Nesbit, Advances in oxidized porous silicon for SOI, in: IEDM Technical Digest, pp. 800–803 (1984).

    Google Scholar 

  98. K. Anzai, F. Otoi, M. Ohnishi, and H. Kitabayashi, Fabrication of high speed 1 micron FIPOS/CMOS, in: IEDM Technical Digest, pp. 796–799 (1984).

    Google Scholar 

  99. H. Takai and T. Itoh, Porous silicon layers and its oxide for the silicon-on-insulator structure, J. Appl. Phys. 60, 222–226 (1986).

    Article  Google Scholar 

  100. S. Konaka, M. Tabe, and T. Sakai, A new silicon-on-insulator structure using a silicon molecular beam epitaxial growth on porous silicon, Appl. Phys. Lett. 41, 86–88 (1982).

    Article  Google Scholar 

  101. T. L. Lin, S. C. Chen, Y. C. Kao, K. L. Wang, and S. Iyer, 100 µm wide silicon-on-insulator structures by Si molecular beam epitaxy growth on porous silicon, Appl. Phys. Lett. 48, 1793–1795 (1986).

    Article  Google Scholar 

  102. T. L. Lin and K. L. Wang, New silicon-on-insulator technology using a two-step oxidation technique, Appl. Phys. Lett. 49, 1104–1106 (1986).

    Article  Google Scholar 

  103. J. D. Benjamin, J. M. Keen, A. G. Cullis, B. Innes, and N. G. Chew, Large area, uniform silicon-oninsulator using a buried layer of oxidized porous silicon, Appl. Phys. Lett. 49, 716–718 (1986).

    Article  Google Scholar 

  104. Porous Silicon Techniques, in: Silicon-on-Insulator and Buried Metals in Semiconductors (C. K. Chen, P. L. F. Hemment, J. C. Sturm, and L. Pfeiffer, eds.), Proc. Mater. Res. Soc. Symp., Vol. 107, pp. 427–447, Materials Research Society Press, Pittsburgh (1988).

    Google Scholar 

  105. G. Bomchil, A. Halimaoui, and R. Herino, Porous silicon: The material and its application to SOI technologies, Microelec. Eng. 8, 293–310 (1988).

    Article  Google Scholar 

  106. M. Kimura, K. Egami, M. Kanamori, and T. Hamaguchi, Epitaxial film transfer technique for producing single crystal Si film on an insulating substrate, Appl. Phys. Lett. 43, 263–265 (1983).

    Article  Google Scholar 

  107. L. A. Field and R. S. Muller, Low-temperature silicon—silicon bonding with oxides, J. Electrochem. Soc. 134, 123C (1987).

    Google Scholar 

  108. J. B. Lasky, Wafer bonding for silicon-on-insulator technologies, Appl. Phys. Lett. 48, 78–80 (1986).

    Article  Google Scholar 

  109. W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, Bonding of silicon wafers for siliconon-insulator, J. Appl. Phys. 64, 4943–4950 (1988).

    Article  Google Scholar 

  110. R. D. Black, S. D. Arthur, R. S. Gilmore, N. Lewis, E. L. Hall, and R. D. Lillquist, Silicon and silicon dioxide thermal bonding for silicon-on-insulator applications, J. Appl. Phys. 63, 2773–2777 (1988).

    Article  Google Scholar 

  111. A. Yamada, T. Kawasaki, and M. Kawashima, SOI by wafer bonding with spin-on-glass as adhesive, Electron. Lett. 23, 39–40 (1987).

    Article  Google Scholar 

  112. A. Yamada, T. Kawasaki, and M. Kawashima, Bonding silicon wafer to silicone nitride with spinon-glass as adhesive, Electron. Lett. 23, 314–315 (1987).

    Article  Google Scholar 

  113. T. R. Anthony, Dielectric isolation of silicon by anodic bonding, J. Appl. Phys. 58, 1240–1247 (1985).

    Article  Google Scholar 

  114. D. Lu and J. J. Wortman, Bonding silicon wafers by use of electrostatic fields followed by rapid thermal heating, Mater. Lett. 4, 461–464 (1986).

    Article  Google Scholar 

  115. L. J. Sprnagler and K. D. Wise, A technology for high-performance single-crystal silicon-oninsulator transistors, IEEE Electron Device Lett. EDL-8, 137–139 (1987).

    Article  Google Scholar 

  116. T. Hamaguchi, N. Endo, M. Kimura, and A. Ishitani, Device layer transfer technique using chemimechanical polishing, Jpn. J. Appl. Phys. 23, L815—L817 (1985).

    Article  Google Scholar 

  117. T. Hamaguchi, N. Endo, M. Kimura, and M. Nakamae, Novel LSI/SOI wafer fabrication using device layer transfer technique, IEDM Technical Digest, pp. 688–691 (1985).

    Google Scholar 

  118. K.-Y. Ahn, R. Stengl, T. Y. Tan, and U. Gösele, Stability of interfacial oxide layers during silicon wafer bonding, J. Appl. Phys. 65, 561–563 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Givargizov, E.I. (1991). Alternatives to Oriented Crystallization on Amorphous Substrates. In: Oriented Crystallization on Amorphous Substrates. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2560-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2560-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2562-6

  • Online ISBN: 978-1-4899-2560-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics