Skip to main content

Small Particles

Formation, Structure, and Behavior

  • Chapter
Oriented Crystallization on Amorphous Substrates

Part of the book series: Microdevices ((MDPF))

  • 200 Accesses

Abstract

This book is devoted primarily to formation of thin films, especially of films with thicknesses of 0.1–1 µm, as the most important in practice. Since the thickness of the films, when formed, is in this range, the films consist of crystalline grains that obviously measure no more than 0.1–1 µm in at least one dimension. Moreover, for thermodynamic reasons (e.g., surface-energy effects), the films tend to agglomerate from small grains that measure approximately the same in all three dimensions. Kinetic effects are even more important in determining film dimensions: During formation of the films, particles of submicrometer size are involved in almost all processes beginning with nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Small Particles and Inorganic Clusters (J.-P. Borel and J. Buttet, eds.), Proc. 2nd Int. Meeting; see Spec. Issue of Surf. Sci. 106, N 1–3; North-Holland, Amsterdam (1981).

    Google Scholar 

  2. Small Particles and Inorganic Clusters (K. H. Bennemann and J. Koutecky, eds.), Proc. 3rd Int. Meeting, West Berlin, July 1984; see Spec. Issue of Surf. Sci. 156, N1, 2; North-Holland, Amsterdam (1985).

    Google Scholar 

  3. Atomic Structure and Properties of Small Particles (D. J. Smith, ed.), Proc. of Workshop, Arizona, USA, January 1986; see Spec. Issue of Ultramicroscopy 20, N1/2, North-Holland, Amsterdam (1986).

    Google Scholar 

  4. Surface Mobility on Solid Materials. Fundamental Concepts and Applications (V. T. Binh, ed.), NATO—ASI Series, Plenum Press, New York (1982).

    Google Scholar 

  5. Physics and Chemistry of Small Clusters (P. Jena, B. K. Rao, and S. N. Khanna, eds.), NATO—ASI Ser. B 158, Plenum Press, New York (1987).

    Google Scholar 

  6. Atoms, Molecules and Clusters. Proc. Intern. Symp., Heidelberg, Federal Republic of Germany, April 1986; see Spec. Issue of Z. Phys. D, Vol. 4 (1987).

    Google Scholar 

  7. Fourth Int. Symp. on Small Particles and Inorganic Clusters, July 1988, Aix-en-Provence, France.

    Google Scholar 

  8. Yu. I. Petrov, Physics of Small Particles, Nauka Press, Moscow (1982);

    Google Scholar 

  9. see also Yu. I. Petrov, Clusters and Small Particles, Nauka Press, Moscow (1986). [In Russian]

    Google Scholar 

  10. Metal Clusters (M. Moskovits, ed.), Wiley, New York (1986).

    Google Scholar 

  11. M. Gillet, Structure of small metallic particles, Surf. Sci. 67, 139–157 (1977).

    Google Scholar 

  12. R. Uyeda, Crystallography of metal smoke particles, in: Morphology of Crystals (I. Sunagawa, ed.), pp. 367–508, Reidel/Terra Sci. Publ., Dordrecht/Tokyo (1988).

    Google Scholar 

  13. M. Yacaman, K. Heinemann, and H. Poppa, The determination of the habit planes of nanometersize single-crystal gold particles, CRC Crit. Rev. Solid State Mater. Sci. 10, 243–260 (1981).

    Google Scholar 

  14. K. Kimoto, Y. Kamiya, M. Nonoyama, and R. Uyeda, An electron microscope study on fine metal particles prepared by evaporation in argon gas at low pressure, Jpn. J. Appl. Phys. 2, 702–713 (1963);

    Google Scholar 

  15. see also K. Kimoto and I. Nishida, An electron microscope and electron diffraction study of fine smoke particles prepared by evaporation in argon gas at low pressures, Jpn. J. Appl. Phys. 6, 1047–1059 (1967).

    Google Scholar 

  16. K. Kimoto, Morphology and crystal structure of fine particles produced by a gas evaporation technique, Thin Solid Films 32, 363–365 (1976).

    Google Scholar 

  17. I. Nishida, An electron microscope and electron diffraction study of fine manganese particles prepared by evaporation in argon at low pressure, Jpn. J. Appl. Phys. 26, 1225–1239 (1969).

    Google Scholar 

  18. J. Forssell and B. Persson, Growth and structure of thin chromium films condensed on ultra-high vacuum cleaved NaCl and KCl crystals, J. Phys. Soc. Jpn. 29, 1532–1545 (1970).

    Google Scholar 

  19. R. Uyeda, Growth of polyhedral metal crystallites in inactive gas, J. Cryst. Growth 45, 485–489 (1978);

    Google Scholar 

  20. R. Uyeda, see also Ultramicroscopy, Ref. 3, 20, 29–32 (1986).

    Google Scholar 

  21. S. Kasukabe, S. Yatsuya, and R. Uyeda, Habits of metal crystallites formed by gas-evaporation technique, J. Cryst. Growth 24/25, 315–318 (1974);

    Google Scholar 

  22. see also S. Kasukabe and K. Mihama, Technique for the control of the crystal habit of ultrafine particles in the gas-evaporation technique, J. Cryst. Growth 79, 126–131 (1986).

    Google Scholar 

  23. T. Hayashi, T. Ohno, S. Yatsuya, and R. Uyeda, Formation of ultrafine metal particles by gasevaporation technique. IV. Crystal habits of iron and FCC metals, Al, Co, Ni, Cu, Pd, Ag, In, Au and Pb, Jpn. J. Appl. Phys. 16, 705–717 (1977);

    Google Scholar 

  24. see also S. Yatsuya, S. Kasukabe, and R. Uyeda, Formation of ultrafine metal particles by gas evaporation technique. I. Aluminum in helium, Jpn. J. Appl. Phys. 12, 1675–1684 (1973);

    Google Scholar 

  25. Y. Saito, K. Mihama, and R. Uyeda, Formation of ultrafine metal particles by gas evaporation. IV. BCC metals: Fe, V, Nb, Ta, Cr, Mo and W, Jpn. J. Appl. Phys. 19, 1603–1610 (1980).

    Google Scholar 

  26. Y. Saito, S. Yatsuya, K. Mihama, and R. Uyeda, Crystal structure and habit of fine metal particles formed by gas-evaporation technique: BCC-metals (V, Fe, Cr, Mo, and W), J. Cryst. Growth 45, 501–505 (1978).

    Google Scholar 

  27. C. Solliard, P. Buffat, and F. Faes, Equilibrium structure of small gold crystals, J. Cryst. Growth 32, 123–125 (1976).

    Google Scholar 

  28. C. G. Granqvist and R. A. Buhrman, Ultrafine metal particles, J. Appl. Phys. 47, 2200–2219 (1976).

    Google Scholar 

  29. C. Chapon, C. Henry, and B. Mutaftschiev, Visualization of submicroscopic gold cluster on foreign substrates (NaCl, KCl), J. Cryst. Growth 33, 291–297 (1976).

    Google Scholar 

  30. A. Renou and M. Gillet, Formation of gold particles in a flowing argon system: Electron microscopy of the density, size distribution and size dispersion, J. Cryst. Growth 44, 190–196 (1978).

    Google Scholar 

  31. T. Ohno, Growth of copper-gold and copper-aluminium particles by gas-evaporation technique, J. Cryst. Growth 64, 345–352 (1983);

    Google Scholar 

  32. see also C. Kaito, Formation of double oxides by coalescence of smoke particles of different oxides, J. Cryst. Growth 55, 273–280 (1981);

    Google Scholar 

  33. C. Kaito, Coalescence growth mechanism of smoke particles, Jpn. J. Appl. Phys. 24, 261–264 (1985).

    Google Scholar 

  34. S. Yatsuya, Y. Tsukasaki, K. Mihama, and R. Uyeda, Preparation of extremely fine particles by vacuum evaporation onto a running oil substrate, J. Cryst. Growth 45, 490–494 (1978).

    Google Scholar 

  35. T. Ocana, M. Guillenc, and M. J. Yacaman, Growth of Co3 04 films on NaCl substrates, J. Cryst. Growth 34, 103–108 (1976).

    Google Scholar 

  36. C. Kaito, K. Fujita, H. Shibahara, and M. Shiojiri, Electron microscopic study of metal oxide smoke particles prepared by burning metals in Ar-O2 gas, Jpn. J. Appl. Phys. 16, 697–704 (1977);

    Google Scholar 

  37. see also C. Kaito, Formation of double oxides by coalescence of smoke particles of different oxides, J. Cryst. Growth 55, 273–280 (1981);

    Google Scholar 

  38. C. Kaito, Coalescence growth mechanism of smoke particles, Jpn. J. Appl. Phys. 24, 261–264 (1985).

    Google Scholar 

  39. H. Akoh, Y. Tsukasaki, S. Yatsuya, and A. Tasaki, Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrates, J. Cryst. Growth 45, 495–500 (1978).

    Google Scholar 

  40. S. Iijima, Ultra-fine spherical particles of γ-alumina: Electron microscopy of crystal structure and surface morphology of atomic resolution, Jpn. J. Appl. Phys. 23, L347—L350 (1984).

    Google Scholar 

  41. T. U. M. S. Murthy, N. Miyamoto, M. Shimbo, and J. Nishizawa, Gas-phase nucleation during the thermal decomposition of silane in hydrogen, J. Cryst. Growth 33, 1–7 (1976).

    Google Scholar 

  42. Y. Saito, S. Yatsuya, K. Mihama, and R. Uyeda, Formation of ultrafine particles by gas-evaporation technique. V. Silicon and germanium in argon, Jpn. J. Appl. Phys. 17, 291–297 (1978);

    Google Scholar 

  43. see also Y. Saito, Crystal structure and habit of silicon and germanium particles grown in argon gas, J. Cryst. Growth 47, 61–72 (1979).

    Google Scholar 

  44. C. Kaito and K. Fujita, Growth of crystalline selenium particles by gas evaporation method, Jpn. J. Appl. Phys. 25, 496–497 (1986).

    Google Scholar 

  45. C. Kaito, K. Fujita, and M. Shiojiri, Growth of CdS smoke particles prepared by evaporation in inert gases, J. Appl. Phys. 47, 5161–5166 (1976);

    Google Scholar 

  46. see also C. Kaito, K. Fujita, and M. Shojiri, Growth of tetrapod-like crystals in CdS smoke prepared by gas evaporation, J. Cryst. Growth 57, 199–202 (1982).

    Google Scholar 

  47. M. Shiojiri and C. Kaito, Structure and growth of ZnO smoke particles prepared by gas evaporation technique, J. Cryst. Growth 52, 173–177 (1981).

    Google Scholar 

  48. C. Kaito, K. Fujita, and M. Shiojiri, Growth of CdTe smoke particles prepared by gas evaporation technique, J. Cryst. Growth 62, 375–383 (1983).

    Google Scholar 

  49. J. J. Ramsden, Nucleation and growth of small CdS aggregates by chemical reaction, Surf. Sci. 156, 1027–1039 (1985).

    Google Scholar 

  50. J. D. Eversole, K. Sakurai, and H. P. Broida, Observation of homogeneously nucleated fine particles of PbI2 by electron microscopy and light scattering, J. Cryst. Growth 33, 353–355 (1976).

    Google Scholar 

  51. T. Osaka, H. Nakazawa, T. Hatano, and K. Sakaguchi, Formation of iron sulphide fine particles by evaporation in argon gas, J. Cryst. Growth 34, 92–102 (1976).

    Google Scholar 

  52. K. Yamauchi, S. Yatsuya, and K. Mihama, Growth of fine particles of the Fe—N system prepared by reactive gas evaporation, J. Cryst. Growth 46, 615–619 (1979).

    Google Scholar 

  53. Y. Ando and R. Uyeda, Preparation of ultrafine particles of refractory metal carbides by a gasevaporation method, J. Cryst. Growth 52, 178–181 (1981).

    Google Scholar 

  54. S. Iwama, H. Hayakawa, and T. Arizumi, Ultrafine powders of TiN and AlN produced by a reactive gas evaporation technique with electron beam heating, J. Cryst. Growth 56, 265–269 (1982).

    Google Scholar 

  55. P. M. Ajayan and L. D. Marks, Quasi-melting and phases of small particles, Phys. Rev. Lett. 60, 585–588 (1988);

    Google Scholar 

  56. see also L. D. Marks, P. M. Ajayan, and J. Dundurs, Quasi-melting of small particles, Ultramicroscopy 20, 77–82 (1986);

    Google Scholar 

  57. P. M. Ajayan, L. D. Marks, and J. Dundurs, Surface dynamics of small particles, in: Characterization of Defects in Materials (R. W. Siegel, J. R. Weertman, and R. Sinclair, eds.), Proceedings of the Materials Research Society Symposium, Vol. 82 (Materials Research Society Press, Pittsburgh), pp. 469–474 (1987).

    Google Scholar 

  58. H. Poppa, D. Moorhead, and K. Heinemann, Preparation and analysis of particulate metal deposits, Thin Solid Films 128, 251–267 (1985).

    Google Scholar 

  59. K. Heinemann and F. Soria, On the detection and size classification of nanometer-size metal particles on amorphous substrates, Ultramicroscopy 20, 1–14 (1986).

    Google Scholar 

  60. K. Sattler, Metallic, ion, and Van der Waals clusters, in: Current Topics in Materials Science (E. Kaldis, ed.), vol. 12, pp. 1–79, North-Holland, Amsterdam (1982).

    Google Scholar 

  61. K. Sattler, Clusters in beams, Ultramicroscopy 20, 55–64 (1986).

    Google Scholar 

  62. O. F. Hagena and W. Obert, Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas, J. Chem. Phys. 56, 1793–1802 (1972).

    Google Scholar 

  63. J. Farges, B. Raoult, and G. Torchet, Crystalline and noncrystalline effects in electron diffraction patterns from small clusters in an argon cluster beam, J. Chem. Phys. 59, 3454–3458 (1973);

    Google Scholar 

  64. see also J. Farges, Homogeneous nucleation in a free argon jet: Observation of clusters by electron diffraction, J. Cryst. Growth 31, 79–86 (1975);

    Google Scholar 

  65. J. Farges, M. F. de Feraudy, B. Raoult, and G. Torchet, Structure and temperature of rare gas clusters in a supersonic expansion, Surf. Sci. 106, 95–100 (1981);

    Google Scholar 

  66. J. Farges, M. F. de Feraudy, B. Raoult, and G. Torchet, Atomic structure of small clusters: Why and how of the five-fold symmetry, in: Physics and Chemistry of Small Clusters (P. Jena, B. K. Rao, and S. N. Khanna, eds.), NATO-ASI Ser. B158, Plenum Press, New York, pp. 15–24 (1987).

    Google Scholar 

  67. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, Laser production of supersonic metal cluster beams, J. Chem. Phys. 74, 6511–6512 (1981).

    Google Scholar 

  68. J. E. Hulse and M. Moskovits, The interaction of carbon monoxide with matrix-isolated nickel clusters: A model for carbon monoxide chemisorbed on nickel, Surf. Sci. 57, 125–142 (1976);

    Google Scholar 

  69. see also M. Moskovits and J. E. Hulse, The ultraviolet-visible spectra of diatomic, triatomic, and higher nickel clusters, J. Chem. Phys. 66, 3988–3994 (1977);

    Google Scholar 

  70. M. Moskovits and J. E. Hulse, Optical spectroscopy of copper clusters: Atom to bulk, J. Chem. Phys. 67, 4271–4278 (1977).

    Google Scholar 

  71. T. Takagi, I. Yamada, K. Matsubara, and H. Takaoka, Ionized-cluster beam epitaxy, J. Cryst. Growth 45, 318–325 (1978).

    Google Scholar 

  72. I. Yamada, K. Matsubara, M. Kodama, M. Ozawa, and T. Takagi, Characteristics of thin films formed by the ionized-cluster beam technique, J. Cryst. Growth 45, 326–331 (1978);

    Google Scholar 

  73. also I. Yamada, H. Takaoka, H. Inokawa, H. Usui, S. C. Cheng, and T. Takagi, Vaporized-metal cluster formation and effect of kinetic energy of ionized clusters on film formation, Thin Solid Films 92, 137–146 (1982).

    Google Scholar 

  74. A. E. T. Kuiper, G. E. Thomas, and W. J. Schouten, Thin film deposition from beams of ionized atoms and clusters, J. Cryst. Growth 45, 332–333 (1978);

    Google Scholar 

  75. see also A. E. T. Kuiper, G. E. Thomas, and W. J. Schouten, Ion cluster beam deposition of silver and germanium on silicon, J. Cryst. Growth 51, 17–40 (1981).

    Google Scholar 

  76. K.-H. Müller, Cluster-beam deposition of thin films: A molecular dynamics simulation, J. Appl. Phys. 61, 2516–2521 (1987).

    Google Scholar 

  77. S.-N. Mei, S.-N. Yang, J. Wong, C.-H. Choi, and T.-M. Lu, On the metal cluster formation in ionized cluster beam deposition, J. Cryst. Growth 87, 357–364 (1988).

    Google Scholar 

  78. S. D. Berry, Continuous mass selected cluster ion production using a liquid metal ion source, in: Physics and Chemistry of Small Clusters (P. Jena, B. K. Rao, and S. N. Khanna, eds.), NATO-ASI Ser. B158, Plenum Press, New York, pp. 49–54 (1987).

    Google Scholar 

  79. O. Echt, K. Sattler, and E. Recknahel, Magic numbers for sphere packing: Experimental verification n free xenon clustersø Phys. Rev. Lett. 47, 1121–1124 (1981).

    Google Scholar 

  80. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen, Electronic shell structure and abundances of sodium clusters, Phys. Rev. Lett. 52, 2141–2143 (1984).

    Google Scholar 

  81. M. Watanabe, Y. Saito, S. Nishigaki, and T. Noda, Magic numbers and critical sizes of tin clusters emitted from a liquid metal ion source, Jpn. J. Appl. Phys. 27, 344–347 (1988);

    Google Scholar 

  82. see also Y. Saito, M. Watanabe, T. Hagiwara, S. Nishigaki, and T. Noda, Magic numbers in a mass spectrum of lithium clusters emitted from a liquid metal ion source, Jpn. J. Appl. Phys. 27, 424–427 (1988).

    Google Scholar 

  83. J. D. Bernal, Geometrical approach to the structure of liquids, Nature 183, 141–147 (1959).

    Google Scholar 

  84. F. C. Frank, Supercooling of liquids, Proc. R. Soc. London Ser. A 215, 43–46 (1952).

    Google Scholar 

  85. Y. Fukano and C. M. Wayman, Shapes of nuclei of evaporated FCC metals, J. Appl. Phys. 40, 1656–1664 (1969).

    Google Scholar 

  86. M. R. Hoare and P. Pal, Statistics and stability of small assemblies of atoms, J. Cryst. Growth 17, 77–96 (1972).

    Google Scholar 

  87. S. Stoyanov, Nucleation theory for high and low supersaturations, in: Current Topics in Materials Science (E. Kaldis, ed.), Vol. 3, pp. 421–462, North-Holland, Amsterdam (1979).

    Google Scholar 

  88. C. Y. Yang and T. Halicioglu, Atomistic studies of the structural stability of isolated small particles, Thin Solid Films 57, 246 (1979). p 66.

    Google Scholar 

  89. D. W. Abraham, K. Sattler, E. Ganz, H. J. Mamin, R. E. Thompson, and J. Clarke, Direct imaging of Au and Ag clusters by scanning tunneling microscopy, Appl. Phys. Lett. 49, 853–855 (1986).

    Google Scholar 

  90. M. R. Haore, P. Pal, and P. P. Wegener, Argon clusters and homogeneous nucleation: Comparison of experiment and theory, J. Colloid Interface Sci. 75, 126–137 (1980).

    Google Scholar 

  91. M. J. Yacaman, K. Heinemann, C. Y. Yang, and H. Poppa, The structure of small, vapor deposited particles. II. Experimental study of particles with hexagonal profile, J. Cryst. Growth 47, 187–195 (1979).

    Google Scholar 

  92. C. L. Briant and J. J. Burton, Molecular dynamics study of the structure and thermodynamic properties of argon microclusters, J. Chem. Phys. 63, 2045–2058 (1975).

    Google Scholar 

  93. A. Bonissent and B. Mutaftschiev, On the equilibrium pressure of phases with very small dimensions, J. Chem. Phys. 58, 3727–3734 (1973).

    Google Scholar 

  94. J. Farges, M. F. de Feraudy, B. Raoult, and G. Torchet, Structure and temperature of rare gas clusters in a supersonic expansion, Surf. Sci. 106, 95–100 (1981).

    Google Scholar 

  95. W. Knauer, Formation of large metal clusters by surface nucleation, J. Appl. Phys. 62, 841–851 (1987).

    Google Scholar 

  96. S. Ino, Epitaxial growth of metals on rocksalt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultrahigh vacuum, J. Phys. Soc. Jpn. 21, 346–362 (1966).

    Google Scholar 

  97. S. Ino, Stability of multiply-twinned particles, J. Phys. Soc. Jpn. 27, 941–953 (1969).

    Google Scholar 

  98. S. Ogawa and S. Ino, Multiple twinned particles, in: Advances in Epitaxy and Endotaxy. Physical Problems of Epitaxy. (H. G. Schneider and V. Ruth, eds.), pp. 183–226, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1971);

    Google Scholar 

  99. see also S. Ogawa, S. Ino, T. Kato, and H. Ota, Epitaxial growth of face-centered cubic metals on alkali-halide crystals cleaved in ultrahigh vacuum, J. Phys. Soc. Jpn. 21, 1963–1972 (1966);

    Google Scholar 

  100. S. Ino and S. Ogawa, Multiply twinned particles at earlier stages of gold film formation on alkali-halide crystals, J. Phys. Soc. Jpn. 22, 1365–1374 (1967).

    Google Scholar 

  101. J. G. Alipress and J. V. Sanders, The structure and orientation of crystals in deposits of metals on mica, Surf. Sci.7, 1–25 (1967).

    Google Scholar 

  102. T. Komoda, Study on the structure of evaporated gold particles by means of a high resolution electron microscopy, Jpn. J. Appl. Phys.7, 27–30 (1968).

    Google Scholar 

  103. A. Green, E. Bauer, R. L. Peck, and J. Dancy, Stages of epitaxial film formation, Krist. Tech. 5, 345–366 (1970).

    Google Scholar 

  104. E. Gillet and M. Gillet, Croissance continue, à partir de germes à symétrie quinaire, des cristallites “multiples” formés lors de la nucléation hétérogène, J. Cryst. Growth 13/14, 212–216 (1972);

    Google Scholar 

  105. see also E. Gillet and M. Gillet, Formation et croissance des édifices atomiques présentant des arrangements pentagonaux, Thin Solid Films 15, 249–257 (1973). [In French]

    Google Scholar 

  106. F. Robinson and M. Gillet, Electron microscopy investigation of structure and morphology of small supported metal particles of palladium, Thin Solid Films 98, 179–196 (1982).

    Google Scholar 

  107. M. Brieu and M. Gillet, Étude par microscopic et diffraction électroniques de particules pentagonales de nickel obtenu par réduction d’un sel en phase liquide, Thin Solid Films 100, 53–65 (1983).

    Google Scholar 

  108. K. Yagi, K. Takayanagi, K. Kobayashi, and G. Honjo, In situ observations of growth processes of multiply-twinned particles, J. Cryst. Growth 28, 117–124 (1975).

    Google Scholar 

  109. K. Heinemann, M. J. Yacaman, C. Y. Yang, and H. Poppa, The structure of small, vapor-deposited particles. I. Experimental study of single crystals and particles with pentagonal profiles, J. Cryst. Growth 47, 177–186 (1979).

    Google Scholar 

  110. C. Y. Yang, Crystallography of decahedral and icosahedral particles. I. Geometry of twinning, J. Cryst. Growth 47, 274–282 (1979);

    Google Scholar 

  111. see also C. Y. Yang, M. J. Yacaman, and K. Heineman, Crystallography of decahedral and icosahedral particles, II. High symmetry orientations, J. Cryst. Growth 47, 283–290 (1979).

    Google Scholar 

  112. C. Y. Yang, K. Heinemann, M. J. Yacaman, and H. Poppa, A structural analysis of small vapordeposited “multiply-twinned” gold particles, Thin Solid Films 58, 163–168 (1979).

    Google Scholar 

  113. L. D. Marks and A. Howie, Multiply-twinned particles in silver catalysts, Nature 282, 196–198 (1979).

    Google Scholar 

  114. L. D. Marks and D. J. Smith, High-resolution studies of small particles of gold and silver. I. Multiply-twinned particles, J. Cryst. Growth 54, 425–432 (1981);

    Google Scholar 

  115. see also D. J. Smith and L. D. Marks, High-resolution studies of small particles of gold and silver. II. Single crystals, lamellar twins and polyparticles, J. Cryst. Growth 54, 433–438 (1981).

    Google Scholar 

  116. L. D. Marks, Modified Wulff constructions for twinned particles, J. Cryst. Growth 61, 556–566 (1983);

    Google Scholar 

  117. see also L. D. Marks, Surface structure and energetics of multiply-twinned particles, Philos. Mag. 49A, 81–93 (1984).

    Google Scholar 

  118. A. Howie and L. D. Marks, Elastic strains and the energy balance for multiply-twinned particles, Philos. Mag. 49A, 95–109 (1984).

    Google Scholar 

  119. L. D. Marks, Inhomogeneous strains in small particles, Surf. Sci. 150, 302–318 (1985).

    Google Scholar 

  120. J. Buttet and J. P. Borel, Structural and electronic properties of small metal aggregates, Helv. Phys. Acta 56, 541–550 (1983).

    Google Scholar 

  121. H. Hofmeister, Habit and internal structure of multiply twinned gold particles on AgBr films, Thin Solid Films 116, 151–162 (1984).

    Google Scholar 

  122. S. Iijima, Electron microscopy of small particles, J. Electron Microsc. 34, 249–265 (1985).

    Google Scholar 

  123. S. Iijima and T. Ichihashi, Structural instability of ultrafine particles of metals, Phys. Rev. Lett. 56, 616–619 (1986).

    Google Scholar 

  124. M. Avalos-Borja and R. Perez, Analysis of stacking faults in small metallic particles, J. Cryst. Growth 74, 345–352 (1986).

    Google Scholar 

  125. S. A. Nepijko, V. I. Styopkin, H. Hofmeister, and R. Scholtz, Defects in multiply-twinned particles, J. Cryst. Growth 76, 501–506 (1986).

    Google Scholar 

  126. A. Renou and J. M. Penisson, Direct atomic imaging of small multiply twinned palladium particles, J. Cryst. Growth 78, 357–368 (1986).

    Google Scholar 

  127. A. J. Melmed and D. O. Hayward, On the occurrence of fivefold rotational symmetry in metal whiskers, J. Chem. Phys. 31, 545–546 (1959).

    Google Scholar 

  128. F. Ogburn, B. Paretzkin, and H. S. Peiser, Pseudopentagonal twins in electrodeposited copper dendrites, Acta Crystallogr. 17, 774–775 (1964).

    Google Scholar 

  129. C. W. Mays, J. S. Vermaak, and D. Kuhlmann-Wilsdorf, Surface stress and surface tension. II. Determination of the surface stress of gold, Surf. Sci. 12, 134–140 (1968).

    Google Scholar 

  130. C. Solliard, Structure and strain of the crystalline lattice of small gold and platinum particles, Surf. Sci. 106, 58–63 (1981).

    Google Scholar 

  131. J. Woltersdorf, A. S. Nepijko, and E. Pippel, Dependence of lattice parameters of small particles on the size of the nuclei, Surf. Sci. 106, 64–69 (1981).

    Google Scholar 

  132. K. Heinemann, T. Osaka, H. Poppa, and M. Avalos-Borja, In situ transmission electron microscope studies of palladium on magnesium oxide, J. Catal. 83, 61–78 (1983).

    Google Scholar 

  133. K. Heinemann and H. Poppa, In situ TEM evidence of lattice expansion of very small supported palladium particles, Surf. Sci. 156, 265–274 (1985).

    Google Scholar 

  134. L. D. Marks, V. Heine, and D. J. Smith, Direct observation of elastic and plastic deformations at Au (111) surfaces, Phys. Rev. Lett. 52, 656–658 (1984).

    Google Scholar 

  135. L. D. Marks and D. J. Smith, Direct atomic imaging of solid surfaces. II. Gold (111) surfaces during and after in situ carbon etching, Surf. Sci. 143, 495–508 (1984).

    Google Scholar 

  136. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53, 1951–1953 (1984).

    Google Scholar 

  137. D. R. Nelson and B. I. Halpern, Pentagonal and icosahedral order in rapidly cooled metals, Science 229, 233–238 (1985).

    Google Scholar 

  138. K. Chattopadhyay, S. Ranganathan, G. N. Subbanna, and N. Thangaraj, Electron microscopy of quasi-crystals in rapidly solidified Al-14 % Mn alloys, Scripta Metall. 19, 767–771 (1985).

    Google Scholar 

  139. S. R. Hishitani, H. Kawaura, K. F. Kobayashi, and P. H. Shingu, Growth of quasi-crystals from the supersaturated solid solutions, J. Cryst. Growth 76, 209–214 (1988).

    Google Scholar 

  140. K. Hiraga, B.-P. Zhang, M. Hirabayashi, A. Inoue, and T. Masumoto, Highly ordered icosahedral quasicrystal of Al—Cu—Fe alloy studied by electron diffraction and high-resolution electron microscopy, Jpn. J. Appl. Phys. 27, L951—L953 (1988).

    Google Scholar 

  141. A. J. Melmed and R. Klein, Icosahedral symmetry in a metallic phase observed by field-ion microscopy, Phys. Rev. Lett. 56, 1478–1481 (1986).

    Google Scholar 

  142. Y. Saito, H. S. Chen, and K. Mihama, Icosahedral quasicrystal produced by gas evaporation of Al—Mn alloy, Appl. Phys. Lett. 48, 581–583 (1986).

    Google Scholar 

  143. L. D. Marks, Particle size effects on Wulff constructions, Surf. Sci. 150, 358–366 (1985).

    Google Scholar 

  144. S.-W. Wang, L. M. Falicov, and A. W. Searcy, The equilibrium shapes of small particles, Surf. Sci. 143, 609–625 (1984).

    Google Scholar 

  145. H. Hofmeister, H. Haefke, and M. Krohn, Habit of gold particles vapour-deposited onto silver bromide films, J. Cryst. Growth 58, 507–516 (1982).

    Google Scholar 

  146. B. L. Mattes, Atom clustering and stacking formations on interfaces, J. Vac. Sci. Technol. 13, 816–826 (1976).

    Google Scholar 

  147. J.-O. Bovin, R. Wallenberg, and D. J. Smith, Imaging of atomic clouds outside the surfaces of gold crystals by electron microscopy, Nature 317, 47–49 (1985).

    Google Scholar 

  148. D. J. Smith, A. K. Petford-Long, L. R. Wallenberg, and J. O. Bovin, Dynamic atomic-level rearrangements in small gold particles, Science 233, 872–875 (1986).

    Google Scholar 

  149. L. R. Wallenberg, J.-O. Bovin, A. K. Petford-Long, and D. J. Smith, Atomic-resolution study of structural rearrangements in small platinum crystals, Ultramicroscopy 20, 71–76 (1986).

    Google Scholar 

  150. P. Williams, Motion of small gold clusters in the electron microscope, Appl. Phys. Lett. 50, 1760–1762 (1987).

    Google Scholar 

  151. A. K. Petford-Long, D. J. Smith, L. R. Wallenberg, and J.-O. Bovin, On the growth of small crystals of Cd, Zn, Pt and Rh during electron microscope observations, J. Cryst. Growth 80, 218–224 (1987).

    Google Scholar 

  152. N. L. Long, R. F. Marzke, M. McKelvy, and W. S. Glausinger, Characterization of Pt microcrystals using high resolution electron microscopy, Ultramicroscopy 20, 15–20 (1986).

    Google Scholar 

  153. R. Wallenberg, J.-O. Bovin, and D. J. Smith, Atom hopping on small gold particles imaged by high-resolution electron microscopy, Naturwissenschaften 72, 539–541 (1985).

    Google Scholar 

  154. J.-O. Malm, J.-O. Bovin, A. K. Petford-Long, and D. J. Smith, The real-time growth of atom planes on Ru, Rh and Sn microcrystals observed at atomic resolution, J. Cryst. Growth 89, 165–170 (1988).

    Google Scholar 

  155. G. D. T. Spiller, Time-dependent melting and superheating of lead crystallites, Philos. Mag. 46, 535–549 (1982).

    Google Scholar 

  156. M. Takagi, Electron-diffraction study of liquid-solid transition of thin metal films, J. Phys. Soc. Jpn. 9, 359–363 (1954).

    Google Scholar 

  157. M. Blackman and A. E. Curzon, On the size dependence of the melting and solidification temperatures of small particles of tin, in: Structure and Properties of Thin Films (C. A. Neugebauer, J. B. Newkirk, and D. A. Vermilyea, eds.), pp. 217–222, Wiley, New York (1959).

    Google Scholar 

  158. N. T. Gladkich, R. Niedermayer, and K. Spiegel, Nachweis grosser Schmelzpunktserniedrigungen bei dünnen Metalschichten, Phys. Status Solidi 15, 181–192 (1966). [In German]

    Google Scholar 

  159. L. S. Palatnik and Yu. F. Komnik, Mechanism of the vacuum condensation of metals, in: Growth of Crystals (A. V. Shubnikov and N. N. Sheftal’, eds.), Vol. 3, pp. 126–132, Consultants Bureau, New York (1962). Original Russian text by Nauka Press, Moscow (1961).

    Google Scholar 

  160. Yu. F. Komnik, Characteristic condensation temperatures of thin films, Sov. Phys.—Solid State 6, 2309–2317 (1965).

    Google Scholar 

  161. A. Barna, P. B. Barna, and J. F. Pocza, Formation processes of vacuum deposited indium films and thermodynamic properties of submicroscopic particles observed by in situ electron microscopy, J. Vac. Sci. Technol. 6, 472–474 (1968);

    Google Scholar 

  162. see also A. Barna, P. Barna, and J. Pocza, Liquid-like behavior of vacuum-deposited indium films, in: Growth of Crystals (N. N. Sheftal, ed.), Vol. 8, pp. 102–107, Consultants Bureau, New York (1969). Original Russian text by Nauka Press, Moscow (1968).

    Google Scholar 

  163. M. J. Stowell, T. J. Law, and J. Smart, The growth, structure, melting and solidification of lead deposits on molybdenite and carbon substrates, Proc. Roy. Soc. London Ser. A 318, 231–241 (1970).

    Google Scholar 

  164. K. H. Behrndt, Phase and other transitions during and after film deposition, J. Appl. Phys. 37, 3841–3853 (1966).

    Google Scholar 

  165. K. H. Behrndt, Initially liquid islands or surface melting? Thin Solid Films 3, R30–R32 (1969);

    Google Scholar 

  166. see also K. H. Behrndt, The enhanced vapor pressure of small clusters, Thin Solid Films 7, 415–425 (1971).

    Google Scholar 

  167. P. R. Couchman and C. L. Ryan, The Lindmann hypothesis and the size-dependence of melting temperature, Philos. Mag. A37, 369–374 (1978).

    Google Scholar 

  168. K. Hoshino and S. Shimamura, A simple model for the melting of fine particles, Philos. Mag. A40, 137–141 (1979);

    Google Scholar 

  169. M. Hasegawa, M. Watabe, and K. Hoshino, A theory of melting in metallic small particles, J. Phys. F 10, 619–635 (1980).

    Google Scholar 

  170. L. S. Palatnik and V. S. Zorin, Theory of transitions in metastable phases, Russ. J. Phys. Chem. 33, 191–194 (1959).

    Google Scholar 

  171. J. P. Borel, Thermodynamic size effect and the structure of metallic clusters, Surf. Sci. 106, 1–9 (1981).

    MathSciNet  Google Scholar 

  172. G. A. Bassett, Continuous observation of the growth of vacuum-evaporated metal films, Proc. Reg. Conf. Electron Microsc. (A. L. Houwink and B. J. Spit, eds.), Vol. 1, pp. 270–275, North-Holland, Amsterdam (1961).

    Google Scholar 

  173. G. A. Bassett, Continuous electron microscope study of vacuum evaporated metal films, in: Condensation and Evaporation of Solids (E. Rutner, P. Goldfinger, and J. P. Hirth, eds.), pp. 599–616, Gordon and Breach, New York (1964).

    Google Scholar 

  174. G. W. Sears and J. B. Hudson, Mobility of silver crystallites on surfaces of MoS2 and graphite, J. Chem. Phys. 39, 2380–2381 (1963).

    Google Scholar 

  175. K. L. Moazed, in: Condensation and Evaporation of Solids (E. Rutner, P. Goldfinger, and J. P. Hirth, eds.), p. 617, Gordon and Breach, New York (1964).

    Google Scholar 

  176. R. T. K. Baker, P. S. Harris, and K. B. Thomas, Direct observation of particle mobility on a surface in gaseous environments, Surf. Sci. 46, 311–316 (1974).

    Google Scholar 

  177. R. T. K. Baker and P. Skiba, The behavior of silver particles supported in various gaseous environments, Carbon 15, 233–237 (1977).

    Google Scholar 

  178. J. A. Dumesic, S. A. Stevenson, R. D. Sherwood, and R. T. K. Baker, Migration of nickel and titanium oxide species as studied by in situ scanning transmission electron microscope, J. Catal. 99, 79–87 (1986).

    Google Scholar 

  179. T. F. Hayden, J. A. Dumesic, R. D. Sherwood, and R. T. K. Baker, Direct observation by controlled atmosphere electron microscopy of the changes in morphology of molybdenum oxide and sulfide supported on alumina and graphite, J. Catal. 105, 299–318 (1987).

    Google Scholar 

  180. G. Honjo, K. Takayanagi, K. Kobayashi, and K. Yagi, In situ electron microscopy of thin film growth on clean substrate in clean vacuum. II. Applications, Jpn. J. Appl. Phys. Suppl. 2, Pt. 1, 537–540 (1974);

    Google Scholar 

  181. see also G. Honjo and K. Yagi, Studies of epitaxial growth of thin films by in situ electron microscopy, in: Current Topics in Materials Science (E. Kaldis, ed.), Vol. 6, pp. 195–307, North-Holland, Amsterdam (1980);

    Google Scholar 

  182. G. Honjo, K. Takayanagi, K. Kobayashi, and K. Yagi, Ultrahigh-vacuum in situ electron microscopy of growth processes of epitaxial thin films, J. Cryst. Growth 42, 98–109 (1977);

    Google Scholar 

  183. G. Honjo, K. Takayanagi, K. Kobayashi, and K. Yagi, On cluster mobilities in nucleation and growth processes, Phys. Status Solidi 55a, 353–367 (1979).

    Google Scholar 

  184. J. J. Métois, K. Heinemann, and H. Poppa, Evidence of translations and rotations of gold crystallites vacuum deposited on (111) MgO surfaces at room temperature, Philos. Mag. 35, 1413–1416 (1977);

    Google Scholar 

  185. see also J. J. Métois, K. Heinemann, and H. Poppa, In situ investigation of the mobility of small gold clusters on cleaved MgO surfaces, Appl. Phys. Lett. 29, 134–136 (1976).

    Google Scholar 

  186. H. Poppa, Studies of thin-film nucleation and growth by transmission electron microscopy, in: Epitaxial Growth, Part A (J. W. Matthews, ed.), pp. 215–279, Academic Press, New York (1975).

    Google Scholar 

  187. K. Heinemann and H. Poppa, Direct observation of small cluster mobility and ripening, Thin Solid Films 33, 237–251 (1976).

    Google Scholar 

  188. A. Masson, J. J. Métois, and R. Kern, Migration Brownienne de crystallites sur une surface et relation avec l’épitaxie. I. Partie expérimentale, Surf. Sci. 27, 463–482 (1971);

    Google Scholar 

  189. J. J. Métois, M. Gaugh, A. Masson, and R. Kern, Migration Brownienne de crystallites sur une surface et relation avec l’épitaxie, II. Cas de l’aluminium sur KCl; précisions sur le méchanisme de glissement, Surf. Sci. 30, 43–52 (1972). [In French]

    Google Scholar 

  190. A. Masson, J. J. Métois, and R. Kern, The development of epitaxy by surface migration of crystallites, in: Advances in Epitaxy and Endotaxy (H. G. Schneider and V. Ruth, eds.), pp. 103–128. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1971).

    Google Scholar 

  191. R. Kern, G. Le Lay, and J. J. Métois, Basic mechanisms in the early stages of epitaxy, in: Current Topics in Materials Science (E. Kaldis, ed.), Vol. 3, pp. 130–419, North-Holland, Amsterdam (1979).

    Google Scholar 

  192. U. Schwabe and K. Hayek, Surface diffusion of adatoms and clusters of gold on alkali halide cleavage planes, Thin Solid Films 12, 403–410 (1972).

    Google Scholar 

  193. J. J. Métois, M. Gaugh, A. Masson, and R. Kern, Épitaxie: Phénomène de postnucléation [sur l’exemple des couches minces discontinues d’aluminium et d’or sur (100) KCl], Thin Solid Films 11, 205–218 (1972).

    Google Scholar 

  194. C. J. Rossow, I. A. Kotze, and C. A. O. Henning, The role of substrate accommodation in the (111)- to (100)-state transition of gold particles on alkali halides, Thin Solid Films 29, 71–83 (1975).

    Google Scholar 

  195. M. Reinbold and H. Hoffmann, Determination of orientation of small crystallites in thin nickel films on UHV-cleaved mica, Thin Solid Films 32, 367–369 (1976).

    Google Scholar 

  196. J. G. Skofronick and W. B. Phillips, Morphological changes in discontinuous gold films following deposition, J. Appl. Phys. 38, 4791–4796 (1967);

    Google Scholar 

  197. see also W. B. Phillips, E. A. Desloge, and J. G. Skofronick, A mechanism to account for observed morphological changes in discontinuous gold films following deposition, J. Appl. Phys. 39, 3210–3218 (1968).

    Google Scholar 

  198. A. J. Donohoe and J. L. Robins, Mobility and coalescence of nuclei in metal vapour deposition on alkali halide substrates, J. Cryst. Growth 17, 70–76 (1972).

    Google Scholar 

  199. H. Schmeisser, Growth and mobility effects of gold clusters on rocksalt (100) surfaces studied with the method of quantitative image analysis. Part I: Cluster size distribution, Thin Solid Films 22, 83–97 (1974);

    Google Scholar 

  200. H. Schmeisser Part II: Spatial distribution of clusters, Thin Solid Films 22, 99–110 (1974).

    Google Scholar 

  201. K. Takeuchi and K. Kinosita, Mobility of gold clusters on a—C substrates, Thin Solid Films 75, L1—L5 (1981).

    Google Scholar 

  202. K. Takeuchi and K. Kinosita, Mobility of gold clusters on amorphous carbon substrates. I. Analysis of cluster density versus time relations, Thin Solid Films 90, 27–30 (1982).

    Google Scholar 

  203. C. R. Henry, C. Chapon, and B. Mutaftschiev, The coalescence of very small gold clusters (of diameter less than 15 Å) on a rock-salt substrate at room temperature, Thin Solid Films 46, 157–165 (1977).

    Google Scholar 

  204. B. F. Usher and J. L. Robins, The mobility of gold clusters on sodium chloride at temperatures between 123 K and ambient, Thin Solid Films 90, 15–18 (1982); H. Schmeisser

    Google Scholar 

  205. B. F. Usher and J. L. Robins, The initial nucleation and growth of gold on sodium chloride for substrate temperatures between 123 and 448 K, Thin Solid Films, 155, 267–283 (1987).

    Google Scholar 

  206. A. D. Gates and J. L. Robins, A universal model for nucleation of gold on NaCl, Thin Solid Films 149, 113–128 (1987).

    Google Scholar 

  207. J. C. Zanghi, J. J. Métois, and R. Kern, Radial distribution function of nuclei formed by condensation on a clean substrate, Philos. Mag. 29, 1213–1220 (1974);

    Google Scholar 

  208. see also J. C. Zanghi, J. J. Métois, and R. Kern, Collective behaviour of gold nuclei on (100) KCl, Philos. Mag. 31, 743 –755 (1975);

    Google Scholar 

  209. J. C. Zanghi, J. J. Métois, and R. Kern, Elastic interaction between small nuclei, Surf. Sci. 52, 556–568 (1975).

    Google Scholar 

  210. J. J. Métois, J. C. Zanghi, and R. Kern, Correlation between nuclei of thin films during nucleation, Philos. Mag. 33, 133–142 (1976).

    Google Scholar 

  211. M. Harsdorff and G. Reiners, Mobility of small gold crystallites on the cleavage planes of alkali halides, Thin Solid Films 85, 267–273 (1981);

    Google Scholar 

  212. M. Harsdorff and G. Reiners, The mobility of small gold crystallites on KBr cleavage planes, J. Cryst. Growth 45, 17–19 (1978).

    Google Scholar 

  213. D. Robertson, Coalescence kinetics of migrating crystallites, J. Appl. Phys. 44, 3924–3927 (1973).

    Google Scholar 

  214. J. J. Métois, J. C. Zanghi, R. Erre, and R. Kern, Coalescence par chocs intergranulaires dans les couches minces [cas de l’or sur (100) KCl], Thin Solid Films 22, 331–350 (1974). [In French]

    Google Scholar 

  215. Metal-Support Interactions in Catalysis, Sintering, and Redispersion (S. A. Stevenson, J. A. Dumesic, R. T. K. Baker, and E. Ruckenstein, eds.), Van Nostrand-Reinhold, New York (1988).

    Google Scholar 

  216. E. Ruckenstein, Interactions and surface phenomena in supported metal catalysts, in: Strong MetalSupport Interactions, Amer. Chem. Soc. Symp. Series, Vol. 298, pp. 152–168, American Chemical Society, Washington, D.C., (1986).

    Google Scholar 

  217. E. Ruckenstein and B. Pulvermacher, Growth kinetics and the size distributions of supported metal crystallites, J. Catal. 29, 224–245 (1973).

    Google Scholar 

  218. Y. F. Chu and E. Ruckenstein, Behavior of platinum crystallites on carbon substrates, Surf. Sci. 67, 517–540 (1977);

    Google Scholar 

  219. see also Y. F. Chu and E. Ruckenstein, On the sintering of platinum on alumina model catalyst, J. Catal. 55, 281–298 (1978).

    Google Scholar 

  220. E. Ruckenstein and D. B. Daduburjor, Mechanisms of aging of supported metal catalysts, J. Catal. 48, 73–86 (1977);

    Google Scholar 

  221. see also E. Ruckenstein and D. B. Daduburjor, Direct ripening of crystallites on a substrate, Thin Solid Films 55, 89–99 (1978).

    Google Scholar 

  222. E. Ruckenstein, Role of wetting in sintering and redispersion of supported metal crystallites, J. Cryst. Growth 47, 666–670 (1979).

    Google Scholar 

  223. E. Ruckenstein and Y. F. Chu, Redispersion of platinum crystallites supported on alumina—role of wetting, J. Catal. 59, 109–122 (1979).

    Google Scholar 

  224. I. Sushumna and E. Ruckenstein, Role of physical and chemical interactions in the behavior of supported metal catalysts: Iron on alumina—a case of study, J. Catal. 94, 239–288 (1985).

    Google Scholar 

  225. I. Sushumna and E. Ruckenstein, Events observed and evidence for crystallite migration in Pt/Al2O3 catalysts, J. Catal. 109, 433–462 (1988).

    Google Scholar 

  226. E. Ruckenstein and X. D. Hu, The effect of steam on supported metal catalysts, J. Catal. 100, 1–16 (1986).

    Google Scholar 

  227. S. H. Lee and E. Ruckenstein, Simulation of the behavior of supported metal catalysts in real reaction atmospheres by means of model catalysts, J. Catal. 107, 23–81 (1987).

    Google Scholar 

  228. E. Ruckenstein and S. H. Lee, The behavior of model Ag/A12O3 catalysts in various chemical environments, J. Catal. 109, 100–119 (1988).

    Google Scholar 

  229. C. G. Granqvist and R. A. Buhrman, Statistical model for coalescence of islands in discontinuous films, Appl. Phys. Lett. 27, 693–694 (1975).

    Google Scholar 

  230. C. G. Granqvist and R. A. Buhrman, Size distribution for supported metal catalysts: Coalescence growth versus Ostwald ripening, J. Catal. 42, 477–479 (1976);

    Google Scholar 

  231. see also C. G. Granqvist and R. A. Buhrman, Reply to comments on the sintering mechanism of supported metal catalysts, J. Catal. 46, 238–242 (1977).

    Google Scholar 

  232. P. Wynblatt and N. A. Gjostein, Supported metal crystallites, in: Progress in Solid State Chemistry (H. Reiss and J. O. McCaldin, eds.), Vol. 9, pp. 21–58, Pergamon Press, Oxford (1975);

    Google Scholar 

  233. see also P. Wynblatt and N. A. Gjostein, Particle growth in model supported metal catalysts. I. Theory, Acta Metall. 24, 1165–1174 (1976).

    Google Scholar 

  234. P. Wynblatt, Particle growth in model supported metal catalysts. II. Comparison of experiment with theory, Acta Metall. 24, 1175–1182 (1976).

    Google Scholar 

  235. J. T. Richardson and J. G. Crump, Crystallite size distributions of sintered nickel catalysts, J. Catal. 57, 417–425 (1979).

    Google Scholar 

  236. H. K. Kuo, P. Ganesan, and R. J. DeAngelis, The sintering of a silica-supported nickel catalyst, J. Catal. 64, 303–319 (1980).

    Google Scholar 

  237. M. Arai, T. Shikawa, T. Nakayama, and Y. Nishiyama, Effects of metal-support interaction and temperature on the sintering of platinum and silver particles supported on inorganic solids, J. Colloid Interface Sci. 97, 254–255 (1984).

    Google Scholar 

  238. M. Arai, T. Nakayama, and Y. Nishiyama, Sintering and pit formation of Ni particles supported on a thin TiO2–SiO2 film, J. Catal.111, 440–444 (1988).

    Google Scholar 

  239. K. T. Kim and S. K. Ihm, Sintering behavior of nickel particles supported on alumina model catalyst in hydrogen atmosphere, J. Catal. 96, 12–22 (1985).

    Google Scholar 

  240. M. F. Gillet and S. Channakhone, Crystallographic structure and chemisorption activity of palladium/mica model catalysts. I. Structure and morphology of small palladium particles, J. Catal. 97, 427–436 (1986).

    Google Scholar 

  241. H. K. Plummer, W. L. Watkins, and W. L. H. Gandhi, Characterization of silver catalysts for the oxidation of methanol, Appl. Catal. 29, 261–293 (1987).

    Google Scholar 

  242. I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19, 35–50 (1961).

    Google Scholar 

  243. B. K. Chakraverty, Grain size distribution in thin films. 1. Conservative systems, J. Phys. Chem. Solids 28, 2401–2412 (1967);

    Google Scholar 

  244. B. K. Chakraverty Non-conservative systems, J. Phys. Chem. Solids 28, 2413–2421 (1967).

    Google Scholar 

  245. P. C. Flynn and S. E. Wanke, Model of supported metal catalyst sintering. I. Development of model, J. Catal. 34, 390–399 (1974);

    Google Scholar 

  246. P. C. Flynn and S. E. Wanke II. Application of model, J. Catal. 34, 400–410 (1974).

    Google Scholar 

  247. S. E. Wanke, Comments on the sintering mechanism of supported metal catalysts, J. Catal. 46, 234–237 (1977).

    Google Scholar 

  248. J. M. Thomas and P. L. Walker, Mobility of metal particles on a graphite substrate, J. Chem. Phys. 41, 587–588 (1964).

    Google Scholar 

  249. R. T. K. Baker, J. A. France, I. Rouse, and R. J. Waite, Catalytic oxidation of graphite by platinum and palladium, J. Catal. 41, 22–29 (1976).

    Google Scholar 

  250. J. A. Bett, K. Kinosita, and P. Stonehourt, Crystalline growth of platinum dispersed on graphitized carbon black, J. Catal. 35, 307–316 (1974).

    Google Scholar 

  251. M. Harsdorff, Crystal orientation in deposits of metals condensed on alkali halides in vacuo, Solid State Commun. 2, 133–136 (1964).

    Google Scholar 

  252. S. Ino, D. Watanabe, and S. Ogawa, Epitaxial growth of metals on rocksalt faces cleaved in vacuum, J. Phys. Soc. Jpn. 19, 881–891 (1964).

    Google Scholar 

  253. J. W. Matthews and E. Grünbaum, The need for contaminants in the epitaxial growth of gold on rocksalt, Appl. Phys. Lett. 5, 106–108 (1964).

    Google Scholar 

  254. S. Shinozaki and H. Sato, Need of contamination for the epitaxial growth of iron on rocksalt, J. Appl. Phys. 36, 2320–2321 (1965).

    Google Scholar 

  255. K. Mihama, H. Miyahara, and H. Ave, Electron microscope study of the structure of gold films evaporated on sodium chloride. I: Influences of deposition rate and residual gas, J. Phys. Soc. Jpn. 23, 785–793 (1967).

    Google Scholar 

  256. V. S. Postnikov, V. M. Ievlev, and I. V. Zolotukhin, Epitaxial growth of Al, Ag and Cu on NaCl crystals, Sov. Phys.—Crystallogr. 13, 306–307 (1968).

    Google Scholar 

  257. M. Harsdorff, Effect of gas adsorption on the epitaxy of thin metal films, Z. Naturforsch. 23a, 1059–1067 (1968).

    Google Scholar 

  258. C. A. O. Henning and J. S. Vermaak, The structure of gold films grown on chloride, hydroxide and bicarbonate surfaces of rocksalt crystals, Appl. Phys. Lett. 15, 3–4 (1969).

    Google Scholar 

  259. A. Green, E. Bauer, and J. Dancy, The influence of impurities on the formation of single-crystal films, in: Molecular Processes on Solid Surfaces (E. Drauglis, R. Gretz, and R. Jaffl, eds.), pp. 479–497, McGraw-Hill, New York (1969);

    Google Scholar 

  260. see also A. K. Green, E. Bauer, and J. Dancy, Intluence of chlorine on Au and Ag films evaporated on alkali halide substrates, J. Appl. Phys. 41, 4736–4740 (1970);

    Google Scholar 

  261. A. Green, E. Bauer, R. L. Peck, and J. Dancy, Stages of epitaxial film formation, Krist. Tech. 5; 345–366 (1970).

    Google Scholar 

  262. V. P. Vlasov and G. I. Distler, Reduction of the epitaxial temperature in the crystallization of gold, silver and copper, Sov. Phys.—Solid State 17, 760–761 (1975).

    Google Scholar 

  263. K. Kinosita, Mobility of small clusters on the substrate surface, Surf. Sci. 85, 223–238 (1981).

    Google Scholar 

  264. D. Kashchiev, Recent progress in the theory of thin film growth, Surf. Sci. 86, 14–27 (1977);

    Google Scholar 

  265. see also D. Kashchiev, Kinetics of thin film coalescence due to crystallite surface migration, Surf. Sci. 55, 477–493 (1976).

    Google Scholar 

  266. J. P. Van der Erden, D. Kashchiev, and P. Bennema, Surface migration of small crystallites: A Monte Carlo simulation with continuous time, J. Cryst. Growth 42, 31–34 (1977).

    Google Scholar 

  267. R. Kern, A. Masson, and J. J. Métois, Migration Brownienne de cristallites sur une surface et relation avec l’épitaxie. II. Partie théorique, Surf. Sci. 27, 483–498 (1971). [In French]

    Google Scholar 

  268. H. Reiss, Rotation and translation of islands in the growth of heteroepitaxial films, J. Appl. Phys. 39, 5045–5061 (1968).

    Google Scholar 

  269. I. A. Kotze, J. C. Lombaard, and C. A. O. Henning, The accommodation of epitaxial metal embrions on virgin alkali halide surface, Thin Solid Films 23, 221–232 (1974).

    Google Scholar 

  270. E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).

    Google Scholar 

  271. D. L. Swift and S. K. Friedlander, The coagulation of hydrosols by Brownian motion and laminar shear flow, J. Colloid Sci. 19, 621–647 (1964).

    Google Scholar 

  272. E. Dickinson and R. Parker, Brownian encounters in a polydisperse sedimenting system of interacting colloidal particles, J. Colloid Interface Sci. 97, 220–231 (1984).

    Google Scholar 

  273. K. Okuyama, Y. Kousaka, and K. Hayashi, Change in size distribution of ultrafine aerosol particles undergoing Brownian coagulation, J. Colloid Interface Sci. 101, 98–109 (1984).

    Google Scholar 

  274. D. Esteve, C. Urbina, M. Goldman, H. Frisby, H. Raunand, and L. Strzelski, Direct observation of rotational Brownian motion of spheres by NMR, Phys. Rev. Lett. 52, 1180–1183 (1984).

    Google Scholar 

  275. L. A. Pregenzer and H. Suhl, Validity of Brownian-motion theory of activated processes: Sublimation, Phys. Rev. A 31, 1718–1727 (1985).

    Google Scholar 

  276. S. M. Patel and M. D. Mahajan, Stimulated crystallization of polycrystalline GaSb films, J. Mater. Sci. 16, 1137–1141 (1981);

    Google Scholar 

  277. see also S. M. Patel and N. G. Patel, Stimulated crystallization of polycrystalline ZnTe films, Thin Solid Films 122, 297–304 (1984).

    Google Scholar 

  278. Research in Surface Forces, Consultants Bureau, New York, Vol. 1 (1963); Vol. 2 (1966); Vol. 3 (1969); Vol. 4 (1975).

    Google Scholar 

  279. B. V. Deryaguin and N. V. Churaev, Wetting Films, Nauka Press, Moscow (1984). [In Russian]

    Google Scholar 

  280. B. V. Deryaguin, N. V. Churaev, and V. M. Muller, Surface Forces, Nauka Press, Moscow (1985). [In Russian]

    Google Scholar 

  281. A. W. Adamson, Physical Chemistry of Solids, pp. 329–330, Wiley, New York (1976).

    Google Scholar 

  282. J. Mahanty and B. W. Ninham, Dispersion Forces, Academic Press, New York (1976).

    Google Scholar 

  283. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York (1985).

    Google Scholar 

  284. G. I. Distler and V. P. Vlasov, Lack of orientation in primary nuclei in epitaxial growth of AgCl and PbS, Sov. Phys. Crystallogr. 16, 578–582 (1971);

    Google Scholar 

  285. G. I. Distler and V. P. Vlasov Selective crystallization on surface structure elements of lithium fluoride crystals, Fiz. Tverd. Tela (Leningrad) 11(8), 2226–2229 (1969) [Sov. Phys.-Solid State 11 (1969)].

    Google Scholar 

  286. J. F. Pocza, A. Barna, and P. B. Barna, Die Ausbildung der Textur von vakuumkondensierten In-Schichten, Krist. Tech. 5, 315–321 (1970). [In German]

    Google Scholar 

  287. A. Puskeppel and M. Harsdorff, Epitaxial nucleation of Au on KBr (100) surfaces, Thin Solid Films 35, 99–112 (1976).

    Google Scholar 

  288. J. W. Matthews, Technique for growing single-crystal films of gold on clean sodium chloride substrates, Appl. Phys. Lett. 7, 131–133 (1965).

    Google Scholar 

  289. L. T. Chadderton and M. Anderson, Experimental support for a new theory of epitaxy, Thin Solid Films 1, 229–233 (1968).

    Google Scholar 

  290. C. Kaito, Coalescence growth mechanism of smoke particles, Jpn. J. Appl. Phys. 24, Part 1, 261–264 (1985).

    Google Scholar 

  291. D. B. Dove, Possible influence of electric charge effects on the initial growth processes occurring during the vapor deposition of metal films onto substrates inside the electron microscope, J. Appl. Phys. 35, 2785–2786 (1964).

    Google Scholar 

  292. K. L. Chopra, Thin Film Phenomena, p. 181, McGraw-Hill, New York (1969).

    Google Scholar 

  293. R. B. Marcus and W. B. Joyce, Electrostatic force between small (100 Å) charged islands in the early stages of thin film growth, Thin Solid Films 7, R3-R6 (1971).

    Google Scholar 

  294. R. B. Marcus and W. B. Joyce, Electrostatic forces between small charged islands in the early stages of thin film growth. II. Interactions during growth, Thin Solid Films 10, 1–10 (1972).

    Google Scholar 

  295. K. L. Chopra, Growth of thin metal films under applied electric field, Appl. Phys. Lett. 7,140–142 (1965).

    Google Scholar 

  296. K. L. Chopra, Influence of electric field on the growth of thin metal films, J. Appl. Phys. 37, 2249–2254 (1966).

    Google Scholar 

  297. R. W. Hoffman, The mechanical properties of thin condensed films, in: Physics of Thin Films (G. Hass and R. E. Thun, eds.), Vol. 3, pp. 211–273, Academic Press, New York (1966).

    Google Scholar 

  298. K. Kinosita, Recent developments in the study of mechanical properties of thin films, Thin Solid Films 12, 17–28 (1972).

    Google Scholar 

  299. R. J. Jaccodine and W. A. Schlegel, Measurement of strains at Si-SiO2 interface, J. Appl. Phys. 37, 2429–2434 (1966).

    Google Scholar 

  300. R. W. Hoffman, Stresses in thin films: The relevance of grain boundaries and impurities, Thin Solid Films 34, 185–190 (1976).

    Google Scholar 

  301. K. Kinosita, Mechanical properties of vacuum-deposited films: A commentary, Thin Solid Films 50, 205–210 (1978).

    Google Scholar 

  302. R. Abermann, R. Kramer, and J. Maser, Structure and internal stress in ultra-thin silver films deposited on MgF2 and SiO substrates, Thin Solid Films 52, 215–229 (1978).

    Google Scholar 

  303. R. Abermann, R. Koch, and R. Kramer, Electron microscope structure and internal stress in thin silver and gold films deposited onto MgF2 and SiO substrates, Thin Solid Films 58, 365–370 (1979).

    Google Scholar 

  304. W. Andra and H. Danan, Columnar microstructure and magnetic anisotropy in thin films, Phys. Status Solidi 56a, K 145-K 148 (1979).

    Google Scholar 

  305. W. Andra and H. Danan, Interface energy as an origin of intrinsic stress in thin films, Phys. Status Solidi 70a, K 145 -K 149 (1982).

    Google Scholar 

  306. D. M. Evans and H. Wilman, Crystal growth and orientation in deposits condensed from the vapour, Acta Crystallogr. 5, 731–738 (1952).

    Google Scholar 

  307. D. O. Smith, M. S. Cohen, and G. P. Weiss, Oblique-incidence anisotropy in evaporated permalloy films, J. Appl. Phys. 31, 1755–1762 (1960).

    Google Scholar 

  308. N. G. Nakhodkin and A. I. Shaldervan, Effect of vapour incidence angles on profile and properties of condensed films, Thin Solid Films 10, 109–122 (1972).

    Google Scholar 

  309. H. J. Leamy and A. G. Dirks, Microstructure and magnetism in amorphous rare-earth-transitionmetal thin films. I. Microstructure, J. Appl. Phys. 49, 3430–3438 (1978).

    Google Scholar 

  310. H. J. Leamy, G. H. Gilmer, and A. G. Dirks, The microstructure of vapor deposited thin films, Curr. Top. Mater. Sci. 6, 309–344 (1980).

    Google Scholar 

  311. J. Priest, H. L. Caswell, and Y. Budo, Stress anisotropy in silicon oxide films, J. Appl. Phys. 34, 347–351 (1963).

    Google Scholar 

  312. J. Adamczewska and T. Budzynski, Stress in chemically vapour-deposited silicon films, Thin Solid Films 113, 271–285 (1984).

    Google Scholar 

  313. G. Wassermann and J. Grewen, Texturen metallischer Werkstoffe, 2nd ed., Springer, Berlin (1962).

    Google Scholar 

  314. C. S. Barrett and T. B. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data, Pergamon Press, Elmsford, New York (1980).

    Google Scholar 

  315. Physical Metallurgy, 3rd ed. (R. W. Cahn and P. Haasen, eds.), p. 181, North-Holland, Amsterdam (1983).

    Google Scholar 

  316. I. L. Dillamore and W. T. Roberts, Preferred orientation in wrought and annealed metals, Metall. Rev. 10, 271–380 (1965).

    Google Scholar 

  317. H. Hu and S. P. Gudman, Texture transition in copper, Trans. Metall. Soc. AIME 227, 627–639 (1963).

    Google Scholar 

  318. I. L. Dillamore and W. T. Roberts, Rolling textures in FCC and BCC metals, Acta Metall. 12, 281–293 (1964).

    Google Scholar 

  319. Y. A. Bityurin, S. V. Gaponov, A. A. Gudkov, and V. L. Mironov, Directional crystallization as a result of laser annealing of films, Sov. J. Quantum Electron. 11, 121–123 (1984).

    Google Scholar 

  320. R. Vincent, An analysis of the residual strains in epitaxial tin films, Philos. Mag. 19, 1127–1139 (1969).

    Google Scholar 

  321. J. W. Matthews, Misfit dislocations and the alignment of epitaxial islands, Surf. Sci. 31, 241–256 (1972).

    Google Scholar 

  322. L. B. Garmon and D. L. Doering, Substrate-induced lattice strain in particulate palladium deposits, Thin Solid Films 102, 141–148 (1983).

    Google Scholar 

  323. L. C. A Stoop and J. H. Van der Merwe, A simple model for layered growth in small epitaxial islands, Thin Solid Films 17, 291–309 (1973).

    Google Scholar 

  324. L. C. A. Stoop and J. H. Van der Merwe, Elastic interaction between small epitaxial islands, J. Cryst. Growth 24/25, 289–292 (1974).

    Google Scholar 

  325. L. C. A. Stoop, Small epitaxial islands. Part I. On layered growth, Thin Solid Films 24, 229–241 (1974).

    Google Scholar 

  326. K. L. Chopra and M. R. Randlett, Effect of ultrasonic vibration of the substrate on the growth of thin metal films, Appl. Phys. Lett. 11, 202–203 (1967).

    Google Scholar 

  327. R. Faure, A. Carlan, J. Crebassa, G. Derrousseaux, and B. Robreaux, Modification de la structure des couches minces d’argent soumises à des vibrations mécaniques-mesure de l’adhésion, Thin Solid Films 9, 329–339 (1972).

    Google Scholar 

  328. G. A. Bassett, A new technique for decoration of cleavage and slip steps on ionic crystal surfaces, Philos. Mag. 3, 1042–1045 (1958).

    Google Scholar 

  329. E. I. Givargizov and N. N. Sheftal, Decoration of the growing surface of a crystal, Dokl. Akad. Nauk SSSR 150, 85–88 (1963).

    Google Scholar 

  330. H. Bethge, Oberflächenstrukturen und Kristallbaufehler im electronenmikroskopischen Bild, intersucht am NaCl(II), Phys. Status Solidi 2, 775–820 (1962).

    Google Scholar 

  331. H. Bethge, K. W. Keller, and E. Ziegler, Molecular processes during crystal growth from the vapour phase, J. Cryst. Growth 3/4, 184–187 (1968).

    Google Scholar 

  332. K. W. Keller, Surface microstructures and processes of crystal growth observed by electron microscopy, in: Crystal Growth and Characterization (R. Ueda and J. B. Mullin, eds.), pp. 361–372, North-Holland, Amsterdam (1975).

    Google Scholar 

  333. K. W. Keller, D. Katzer, and H. Höche, Electron microscopic observation and computer simulation of step redistribution in step trains due to changes in step density, in: Growth of Crystals (E. I. Givargizov, ed.), Vol. 13, pp. 54–57, Plenum Press, New York (1986).

    Google Scholar 

  334. G. I. Distler, Y. M. Gerasimov, and N. M. Borisova, Direct method of study of electrical microrelief of crystalline surfaces, Dokl. Akad. Nauk SSSR 165, 329–331 (1965). [In Russian]

    Google Scholar 

  335. G. I. Distler, V. N. Lebedeva, and V. V. Moskvin, Epitaxial overgrowth of gold and silver on an electrically heterogeneous surface of NaCl crystals, J. Cryst. Growth 9, 98–101 (1971).

    Google Scholar 

  336. S. A. Kobzareva and G. I. Distler, Electrical structure of the surface of real crystal substrates as the determining factor of the growth stage in epitaxy, J. Cryst. Growth 10, 269–275 (1971).

    Google Scholar 

  337. C. Chapon, C. Henry, and B. Mutaftschiev, Visualization of submicroscopic gold clusters on foreign substrates (NaCl, KCl), J. Cryst. Growth 33, 291–297 (1976).

    Google Scholar 

  338. J. J. Métois and J. C. Heyraud, Surface decoration: Depletion zone analysis along the steps, J. Cryst. Growth 47, 357–364 (1979).

    Google Scholar 

  339. F. Appel, H. Bethge, and M. Krohn, Direct evidence of post-nucleation decoration, Phys. Status Solidi 91a, 461–464 (1985).

    Google Scholar 

  340. J. J. Métois, K. Heinemann, and H. Poppa, Evidence of translations and rotations of gold crystallites vacuum deposited on (111) MgO surfaces at room temperature, Philos. Mag. 35, 1413–1416 (1977).

    Google Scholar 

  341. J. J. Métois, Migration Brownienne de crystallites sur une surface et relation avec l’épitaxie. IV. Mobilité de crystallites sur une surface: Décoration de gradins monoatomiques de surface, Surf. Sci. 36, 269–280 (1973).

    Google Scholar 

  342. J. C. Zanghi, Influence of a monoatomic step on the collective behaviour of gold nuclei, Surf. Sci. 60, 425–435 (1976).

    Google Scholar 

  343. Y. E. Geguzin and V. V. Kalinin, Coalescence in collisions of foreign particles on the surface of a crystal, Sov. Phys. Solid State 15, 1224–1225 (1973).

    Google Scholar 

  344. J. J. Métois, J. C. Heyraud, and R. Kern, Surface decoration: Localization of crystallites along the steps, Surf. Sci. 78, 191–208 (1978).

    Google Scholar 

  345. M. Krohn, G. Gerth, and H. Stenzel, Conditions of step decoration on crystal surfaces, Phys. Status Solidi 55a, 375–383 (1979).

    Google Scholar 

  346. Y. Kasukabe and T. Osaka, Onset of graphoepitaxy at a monoatomic step, Thin Solid Films 146, 175–181 (1987).

    Google Scholar 

  347. L. S. De Wainer and G. A. Bassett, Electron microscope study of surface marking left by unsteady cleavage crack propagation in NaCl single crystals, Philos. Mag. 38, 707–726 (1978).

    Google Scholar 

  348. J. J. Métois, K. Heinemann, and H. Poppa, The characterization of magnesium oxide surfaces prepared by electron beam cleavage, Thin Solid Films 41, 197–207 (1977).

    Google Scholar 

  349. T. Osaka and Y. Kasukabe, Graphoepitaxy of thin films on a monoatomic step, in: Proceedings of the First Topical Meeting on Crystal Growth Mechanism, Tokyo, January 1988, pp. 99–102.

    Google Scholar 

  350. Y. Kasukabe and T. Osaka, Enhancement of graphoepitaxy by oblique deposition, in: Proceedings of the Second Topical Meeting on Crystal Growth Mechanisms, pp. 87–90, Izu Nagaoka, Japan (1989).

    Google Scholar 

  351. E. Grünbaum and J. W. Matthews, Influence of substrate steps on the orientation of nuclei in thin deposits of gold on rocksalt, Phys. Status Solidi 9, 731–735 (1965).

    Google Scholar 

  352. T. Yanagihara and H. Yamaguchi, Gold particles formed along < 100 >-step lines of sodium chloride crystals, Jpn. J. Appl. Phys. 24, 419–425 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Givargizov, E.I. (1991). Small Particles. In: Oriented Crystallization on Amorphous Substrates. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2560-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2560-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2562-6

  • Online ISBN: 978-1-4899-2560-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics