Skip to main content

Competition Between Electron Transfer and ATPase in Generating Steady-State Protonmotive Force and Phosphorylation Potential

  • Chapter
  • 112 Accesses

Abstract

According to current concepts of the nature of ‘tatic head’ or state 4 respiration, proton leakage (or ‘pump slippage’) will occur and this leakage will increase until a static head is reached1–3. This energy dissipation is replenished by respiration and attendant proton pumping — arriving at a steady-state external ATP/ADP ratio (or phosphorylation potential) which cannot be exceeded due to the intrinsic dielectric constant of the membrane for charge movement. In this view the phosphorylation potential and protonmotive force are in thermodynamic equilibrium with each other. This concept is depicted in Figs. 1 and 2. In Fig. 1 is shown a classical schematic description of the oxidative phosphorylation process, where A, B, C — are adjacent members of the respiratory chain, the central box (~) is the principal energy-transducing intermediate of oxidative phosphorylation (now considered the bulk phase protonmotive force or other co-existing intermediate state) and, at the bottom is the linked reversible ATPase. Mitochondria are considered to generate a steady-state [~] in near equilibrium with a phosphorylation potential (ΔGp), depending on the velocity of energy-consuming reactions when oxidizable substrates are present in excess.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Nicholls, Eur. J. Biochem. 50:305–315 (1974).

    Article  PubMed  CAS  Google Scholar 

  2. D. Pietrobon, G. F. Azzone, and D. Walz., Eur. J. Biochem. 117:389–394 (1981).

    Article  PubMed  CAS  Google Scholar 

  3. G. C. Brown and M. D. Brand, Biochem. J. 234:75–81 (1986).

    PubMed  CAS  Google Scholar 

  4. Z. Drahota and J. Houstek, Biochim. Biophys. Acta 460:541–546 (1977).

    Article  PubMed  CAS  Google Scholar 

  5. N. Kamo, M. Muratsugo, R. Hongoh, and Y. Kobatake, J. Memb. Biol. 49:104–121 (1979).

    Article  Google Scholar 

  6. H. Rottenberg, J. Memb. Biol. 81:127–138 (1984).

    Article  CAS  Google Scholar 

  7. H. Rottenberg, in “Methods in Enzymology,” S. P. Colowick and N. O. Kaplan, eds., Vol. 55, pp. 547-569, Academic Press, New York (1979).

    Google Scholar 

  8. E. J. Davis and W. I. A. Davis-van Thienen, Biochem. Biophys. Res. Commun. 83:1260–1266 (1978).

    Article  PubMed  CAS  Google Scholar 

  9. E. J. Davis and L. Lumeng, J. Biol. Chem. 250:2275–2282 (1975).

    CAS  Google Scholar 

  10. E. J. Davis and W. I. A. Davis-van Thienen, Arch. Biochem. Biophys. 233:573–581 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. D. Nicholls, in “Bioenergetics,” L. Ernster, ed., pp. 29–48, Elsevier, Amsterdam (1984).

    Google Scholar 

  12. H. Rottenberg, in “Modern Cell Biology,” Vol. 4, pp. 47–83, Alan R. Liss, New York (1985).

    Google Scholar 

  13. S. J. Ferguson, Biochim. Biophys. Acta 811:47–95 (1985).

    Article  CAS  Google Scholar 

  14. H. Woelders, W. J. van der Zande, A.-M. A. F. Cohen, R. J. A. Wanders, and K. van Dam, FEBS Lett. 179:278–282 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. V. Petronilli, D. Pietrobon, M. Zoratti, and G. F. Azzone, Eur. J. Biochem. 155:423–431 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. G. F. Azzone, T. Pozzan, J. Massari, and M. Bragadin, Biochim. Biophys. Acta 501:296–306 (1978).

    Article  PubMed  CAS  Google Scholar 

  17. P. S. O’Shea and J. B. Chappell, Biochem. J. 219:401–404 (1984).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, E.J., Davis-van Thienen, W.I.A. (1988). Competition Between Electron Transfer and ATPase in Generating Steady-State Protonmotive Force and Phosphorylation Potential. In: Lemasters, J.J., Hackenbrock, C.R., Thurman, R.G., Westerhoff, H.V. (eds) Integration of Mitochondrial Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2551-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2551-0_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2553-4

  • Online ISBN: 978-1-4899-2551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics