Skip to main content

The Near-Equilibrium Thermodynamics Approach to Living Systems

  • Chapter

Abstract

Classical equilibrium thermodynamics (Gibbs, 1875–1878) has been used to evaluate many of the central reactions in intermediary metabolism (Holzer, et al., 1956, Huckabee, 1957, Bucher and Klingenberg, 1958, Hohorst, et al., 1959, Williamson, et al., 1967). Such near-equilibrium reactions usually have a high forward and reverse flux relative to the net flux through the enzyme and thus, due to analytical limitations, can not be distinguished from reactions which are in true equilibrium. They differ from true equilibrium reactions in that they violate the law of microscopic reversibility since there is a small net flux instead of a true equilibrium where the forward flux, v1 exactly equals the reverse flux, v−1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, JJH, Grove, TH, Wong, GG, Gadian, DG and Radda, GK. (1980) Nature 283:167–170.

    Article  PubMed  CAS  Google Scholar 

  • Bucher, TH and Klingenberg, M. (1958) Angew Chem 70:552–70.

    Article  CAS  Google Scholar 

  • Carafoli, E, Rossi, CS and Lehninger, AL. (1965) J Biol Chem 240:2254–2261.

    PubMed  CAS  Google Scholar 

  • Chance, B and Hollinger, G. (1961) J Biol Chem 236:1577–1584.

    PubMed  CAS  Google Scholar 

  • Clark, WM. (1960) Oxidation-Reduction Potentials of Organic Systems, The Williams and Wilkins Company, Baltimore.

    Google Scholar 

  • Cowgill, RW and Pizer, JI. (1956) J Biol Chem 223:885.

    PubMed  CAS  Google Scholar 

  • Davies, CW. (1962) Ion Association. Butterworths, London.

    Google Scholar 

  • Dodgson, SJ, Forster, RE, Storey, BT and Mela, L. (1980) Proc Natl Acad Sci, USA 77:5562–5566.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, D and Crothers, D. (1979) Physical Chemistry with Applications to the Life Sciences, The Benjamin/Cummings Publishing Company, Inc. London, p.253.

    Google Scholar 

  • Elder, JA and Lehninger, AL.(1973) Biochemistry 12:976–982.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs JW. (1875–1878) Trans Conn Acad III: 108–248, 343-524.

    Google Scholar 

  • Greenawalt, JW, Rossi, CS and Lehninger, AL. (1964) J Cell Biol 23:21–38.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, TM, Moreno, EC and Brown, WE. (1970) J Res NBS 74A:461–475.

    Article  Google Scholar 

  • Groen, AK, van Roermund, CW, Vervoorn RC and Tager, JM. (1986) Biochem J 237:379–89.

    PubMed  CAS  Google Scholar 

  • Groen, AK, Vervoorn, RC, Van der Meer, R and Tager, JM. (1983) J Biol Chem 258:14346–14353.

    PubMed  CAS  Google Scholar 

  • Harris, SI, Balaban, RS and Mandel, LJ. (1980) Science 208:1148–50.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, AB, Sendroy, J and Van Slyke, DD. (1928) J Biol Chem 79:183–192.

    CAS  Google Scholar 

  • Henderson LJ. (1928) Silliman Lectures. New Haven: Yale University Press.

    Google Scholar 

  • Hohorst HJ, Kreutz FH and Bucher TH. (1959) Biochem Z 332:18–46.

    PubMed  CAS  Google Scholar 

  • Holzer H, Schultz G, Lynen F. (1956) Biochem Z 328:252–263.

    PubMed  CAS  Google Scholar 

  • Huckabee WE. (1957) J Clin Invest 37:244–254.

    Article  Google Scholar 

  • Iles, RA, Stevens, AN, Griffiths, JR and Morris, PG.(1985) Biochem J 229:141–151.

    PubMed  CAS  Google Scholar 

  • Kahana, SE, Lowry, OH, Schulz, DW, Passonneau, JV and Crawford, EJ. (1960) J Biol Chem 235:2178.

    PubMed  CAS  Google Scholar 

  • Katchalsky, A and Curran, PF. (1967) Non-Equilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Klingenberg, M and Schollmeyer, P. (1961) Biochem Zeit 335:243–262.

    CAS  Google Scholar 

  • Krebs, HA and Veech, RL. (1969) in The Energy Level and Metabolic Control in Mitochondria, (eds. Papa, S, Tager, JM, Quagliariello, E and Slater, EC) Adriatica Editrice, Bari, Italy, pps. 329–382.

    Google Scholar 

  • Lawson, JWR, Guynn, RW, Cornell, NW and Veech, RL. (1976) in Gluconeogenisis, its regulation in mammalian species, Hanson, RW and Mehlman, MA., eds., John Wiley, New York, pps. 481–512.

    Google Scholar 

  • Lawson, JWR and Veech, RL. (1979) J Biol Chem 254:6528–6537.

    PubMed  CAS  Google Scholar 

  • Lemasters, JJ. (1984) J Biol Chem 259: 13123–13130.

    PubMed  CAS  Google Scholar 

  • Lehninger, AL. (1983) in Biomineralization and Biological Metal Accumulation, (Westbroek, P and de Jong, EW, eds.), D. Reidel, Holland, pp. 107–21.

    Chapter  Google Scholar 

  • Lowry, OH and Passonneau, JV. (1964) J Biol Chem 239:31–42.

    PubMed  CAS  Google Scholar 

  • Marsolias C, Huot S, David F, Garneau M, Brunengraber H. (1987) J Biol Chem 262:2604–2607.

    Google Scholar 

  • McQuate, JT and Utter, MF. (1959) J Biol Chem 234:2151.

    PubMed  CAS  Google Scholar 

  • Meldrum, HK and Roughton, FJW. (1933) J Physiol 80:113.

    PubMed  CAS  Google Scholar 

  • Onsager, L. (1931) Phys Rev 37:405–426.

    Article  CAS  Google Scholar 

  • Plummer, LN and Busenberg, E.(1982) Geochim Cosmochim Acta 46:1011–40.

    Article  CAS  Google Scholar 

  • Raijman, L. (1976) in The Urea Cycle, (Grisolia, S, Baguena, R and Mayor, F., eds.) John Wiley & Sons, New York, 243–254.

    Google Scholar 

  • Tanford, C. (1981) J Gen Physiol 77:223–239.

    Article  PubMed  CAS  Google Scholar 

  • Truesdell, A.H. and Jones, BF. (1974) US Geol. Survey J Res 2:233–248.

    CAS  Google Scholar 

  • Van Dam K and Westerhoff HV. (1984) in Bioenergetics. Ernster L, ed pp 1–27, Elsevier Scientific Publishers B.V., Amsterdam.

    Google Scholar 

  • Veech, RL. (1986) Am J Clin Nutr 44:519–551.

    PubMed  CAS  Google Scholar 

  • Veech RL. (1987) in Pyridine Nucleotide Coenzymes: Chemical, Biochemical and Medical Aspects Vol 2B. (Dolphin D, Poulson R, Avramovic O, eds) pp 79–104, New York: John Wiley & Sons.

    Google Scholar 

  • Veech, RL, Lawson, JWR, Cornell, NW and Krebs, HA. (1979) J Biol Chem 254: 6538–6547.

    PubMed  CAS  Google Scholar 

  • Veech, RL, Raijman, L, Dalziel, K and Krebs, HA. (1969) Biochem J 115:837–842.

    PubMed  CAS  Google Scholar 

  • Walser, M.(1961) J Clin Invest 40:723–30.

    Google Scholar 

  • Williamson DH, Lund P, Krebs HA. (1967) Biochem J 103:514–527.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gitomer, W.L., Veech, R.L. (1988). The Near-Equilibrium Thermodynamics Approach to Living Systems. In: Lemasters, J.J., Hackenbrock, C.R., Thurman, R.G., Westerhoff, H.V. (eds) Integration of Mitochondrial Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2551-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2551-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2553-4

  • Online ISBN: 978-1-4899-2551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics