Skip to main content

Today and Tomorrow for Scintillating Fibre (SCIFI) Detectors

  • Chapter

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 34))

Abstract

We review the current status of SCIFI detectors in experimental particle physics and their prospects in tomorrow’s supercollider detectors. Our main focus concerns tracking devices although we also discuss the important aspects of SCIFI calorimetry. We could say, in summary, that SCIFI detectors will have a bright future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, the review by G.T. Reynolds, IRE Trans. Nucl. Sci. NS-7, 115 (1960). D.A. Hill et al., Proc. 2nd Symp. on Photo-Electronic Devices, London (1961) 475.

    Article  Google Scholar 

  2. H.C. Burrows et al., Nuclear Electronics I, (1962) 153. D.G. Anderson et al., British Scientific Instrument Research Association (SIRA) AERE/EMB/PR1301 (1961); Proc. 6th Int. Congress on Glass (1962) 429. (The latter work resulted in the development of GS1 scintillating glass.)

    Google Scholar 

  3. S.R. Borenstein et al., Proc. 1981 Isabelle Summer Study (1981) 1438; Phys. Scripta 23, 550 (1981); IEEE Trans. Nucl. Sci. NS-29, 402 (1982); IEEE Trans. Nucl. Sci. NS-31, 396 (1984).

    Google Scholar 

  4. L.R. Allemand et al., Nucl. Instrum. Methods 225, 522 (1984).

    Article  Google Scholar 

  5. H. Blumenfeld et al., IEEE/NS-33, No. 1, 54 (1986).

    Google Scholar 

  6. D.R. Potter, IEEE/NS-29, No. 1 (1982).

    Google Scholar 

  7. R. Ruchtii et al., IEEE Trans. Nucl. Sci. NS-30, No. 1, 40 (1983); IEEE/NS-31, No. 1, 69 (1984); IEEE/NS-32, No. 1, 590 (1985); IEEE/NS-33, No. 1, 151 (1986).

    Article  ADS  Google Scholar 

  8. J.M. Gaillard et al. (UA2 Collaboration), Proc. DPF Conf., Eugene, Oregon (1985) 912.

    Google Scholar 

  9. W.R. Binns et al., Nucl. Instrum. Methods A251, 402 (1986).

    ADS  Google Scholar 

  10. A. Konaka et al., Proc. 23rd Int. Conf. on High-Energy Physics, Berkeley (1986).

    Google Scholar 

  11. A. Bross, Nucl. Instrum. Methods 247, 319 (1986).

    Article  ADS  Google Scholar 

  12. M. Atkinson et al., Nucl. Instrum. Methods A254, 500 (1987). The results using CCD readout are presented in a paper which will presently be submitted to Nuclear Instruments and Methods.

    ADS  Google Scholar 

  13. D.R. Potter, Proc. Workshop on New Solid State Devices for High-Energy Physics, Lawrence Berkeley Laboratory (1985).

    Google Scholar 

  14. H. Blumenfeld et al., Nucl. Instrum. Methods 225, 518 (1984); 235, 326 (1985).

    Article  Google Scholar 

  15. H. Burmeister et al., Nucl. Instrum. Methods 225, 530 (1984).

    Article  Google Scholar 

  16. DELPHI Technical Proposal, CERN/LEPC/83-3, 159 (1983).

    Google Scholar 

  17. J. Fent et al., Nucl. Instrum. Methods 211, 315 (1983).

    Article  Google Scholar 

  18. H. Fessler et al., Nucl. Instrum. Methods 228, 303 (1985); Nucl. Instrum. Methods A240, 284 (1985).

    Article  ADS  Google Scholar 

  19. M. Albrow et al. (UA1 Collaboration), CERN-EP/86-131 (1986), submitted to Nuclear Instruments and Methods.

    Google Scholar 

  20. L. Bachman et al., Nucl. Instrum. Methods 206, 85 (1983).

    Article  Google Scholar 

  21. R. Ruchti et al., Proc. 1982 DPF Summer Study on Elementary Particle Physics and Future Facilities, Snowmass, Colorado (1982) 373.

    Google Scholar 

  22. M. Atkinson et al., Nucl. Instrum. Methods 225, 1 (1984).

    Article  Google Scholar 

  23. I.M. Chiang et al., AGS Proposal E787 (1986).

    Google Scholar 

  24. K. Pretzl, private communication.

    Google Scholar 

  25. D. Binnie et al., Proc. 1984 Summer Study on the Design and Utilization of the Superconducting Super Collider, Snowmass, Colorado (1984) 593.

    Google Scholar 

  26. M. Atkinson et al., Nucl. Instrum. Methods 237 (1985) 505. J. Kirkby, Proc. 5th Topical Workshop on Proton-Antiproton Collider Physics, St. Vincent, Aosta Valley (1985) 672.

    Article  ADS  Google Scholar 

  27. P. Sonderegger, CERN-EP/86-214 (1986), submitted to Nuclear Instruments and Methods.

    Google Scholar 

  28. J.B. Birks, Theory and practice of scintillation counting, Pergamon Press, Oxford (1964).

    Google Scholar 

  29. I.B. Berlman, Handbook of fluorescence spectra of aromatic molecules, Academic Press, New York and London (1971).

    Google Scholar 

  30. Nuclear Enterprises Ltd., Bath Road, Beenham, Reading, Berkshire, England.

    Google Scholar 

  31. Bicron Corporation, 12345 Kinsman Road, Newbury, Ohio 44065, USA.

    Google Scholar 

  32. C. Aurouet et al., Nucl. Instrum. Methods 169, 57 (1980).

    Article  ADS  Google Scholar 

  33. M. Bourdinaud and J.C. Thévenin, Physica Scripta, Vol. 23, 534 (1981).

    Article  ADS  Google Scholar 

  34. J.C. Thévenin et al., Nucl. Instrum. Methods 169, 53 (1980).

    Article  ADS  Google Scholar 

  35. P.L. Mattern et al., IEEE Trans. Nucl. Sci. NS-21, 81 (1974); NS-22, 2468 (1975).

    ADS  Google Scholar 

  36. H. Schönbacher and W. Witzeling, Nucl. Instrum. and Methods 165, 517 (1979).

    Article  ADS  Google Scholar 

  37. Y. Sirois and R. Wigmans, Nucl. Instrum. Methods A240, 262 (1985).

    ADS  Google Scholar 

  38. G. Marini et al., CERN/85-08 (Yellow Report, 1985).

    Google Scholar 

  39. J.P. de Brion et al., Saclay preprint DPhPE 86-07 (1986).

    Google Scholar 

  40. J.C. Thévenin, private communication.

    Google Scholar 

  41. C.L. Renschler and L.A. Harrah, Nucl. Instrum. Methods A235, 41 (1985).

    ADS  Google Scholar 

  42. S. Majewski, University of Florida, Gainesville, private communication.

    Google Scholar 

  43. W.R. Binns and A. Bross, Workshop on New Solid State Devices for High-Energy Physics, Lawrence Berkeley Laboratory (1985).

    Google Scholar 

  44. A.R. Spowart, Nucl. Instrum. Methods 135, 441 (1976); 140, 19 (1977); 150, 159 (1978).

    Article  ADS  Google Scholar 

  45. Levy Hill Laboratories Ltd. (C.G.A. Hill, Director), 5 Sheffield House, Fieldings Road, Cheshunt, Waltham, Hertfordshire EN8 9TJ, England.

    Google Scholar 

  46. Collimated Holes Inc. (R.W. Mead, President), 460 Division Street, Campbell, California 95008, USA.

    Google Scholar 

  47. Optical characteristics of cathode ray tube screens, Electronic Industries Association, 2001 Eye Street N.W., Washington, DC 2006, USA. TEPAC Publication No. 116 (revision of JEDEC publication No. 16-C) (1980).

    Google Scholar 

  48. Hamamatsu Photonics K.K., 1126 Ichino-cho, Hamamatsu City, Japan.

    Google Scholar 

  49. Philips International BV, Elcoma Division, PO Box 218, 5600 MD Eindhoven, The Netherlands.

    Google Scholar 

  50. R. Meunier, CERN, private communication.

    Google Scholar 

  51. Delft Electronische Producten, Postbus 60, 9300 AB Roden, The Netherlands.

    Google Scholar 

  52. Thomson-CSF, Division Tubes Electroniques, 38 rue Vauthier, BP 305, 92102 Boulogne-Billancourt Cedex, France.

    Google Scholar 

  53. S. Reynaud, CERN/EF/INSTR 86-1 (1986).

    Google Scholar 

  54. Proxitronic, Robert Bosch Strasse 34, D-6140 Bensheim, Fed. Rep. Germany.

    Google Scholar 

  55. Fibre Optics Development Systems Inc., 427 Olive Street, Santa Barbara, California 93101, USA.

    Google Scholar 

  56. Report of the Task Force on Detector R & D for the Superconducting Super Collider, SSC-SR-1021 (1986).

    Google Scholar 

  57. A. Seiden, these proceedings.

    Google Scholar 

  58. R. Wigmans, CERN/EF/86-18 (1986), submitted to Nuclear Instruments and Methods.

    Google Scholar 

  59. E. Lorenz et al., Nucl. Instrum. Methods A249, 235 (1986).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kirkby, J. (1988). Today and Tomorrow for Scintillating Fibre (SCIFI) Detectors. In: Villa, F. (eds) Vertex Detectors. Ettore Majorana International Science Series, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2545-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2545-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2547-3

  • Online ISBN: 978-1-4899-2545-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics