Skip to main content

Stochastic Model of Electric Field-Induced Membrane Pores

  • Chapter
Electroporation and Electrofusion in Cell Biology

Abstract

Two basic mechanisms have been suggested to describe the experimentally observed properties of electroporation: the electromechanical model and the statistical model of pore expansion. These models have been reviewed by Dimitrov and Jain (1984). This chapter considers the statistical model of electroporation for a one-component planar lipid bilayer membrane. At zero electric field, the membrane is populated with microscopic pores by the fluctuation clustering of vacancies (i. e., molecule-free sites) in the bilayer. Under the effect of a transmembrane electric field, the average pore size increases. The driving force of the electric field-mediated pore opening is associated with the enhancement of the electric polarization of the solvent molecules during their transfer from the bulk solvent space to the region of the larger electric field spreading from the pore wall into the solution of the pore interior (Sugar and Neumann, 1984; Powell et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abidor, I. G., Arakelyan, V. B., Chernomordik, L. V., Chizmadzhev, Y. A., Pastushenko, V. F., and Tarasevich, M. R., 1979, Electric breakdown of bilayer lipid membranes I, Bioelectrochem. Bioenerg. 6:37–52.

    Article  CAS  Google Scholar 

  • Arakelyan, V. B., Chizmadzhev, Y. A., and Pastushenko, V. F., 1979, Electric breakdown of bilayer lipid membranes V, Bioelectrochem. Bioenerg. 6:81–87.

    Article  CAS  Google Scholar 

  • Benz, R., and Zimmermann, U., 1980, Relaxation studies on cell membranes and lipid bilayers in the high electric field range, Bioelectrochem. Bioenerg. 7:723–739.

    Article  CAS  Google Scholar 

  • Benz, R., and Zimmermann, U., 1981, The resealing process of lipid bilayers after reversible electrical breakdown, Biochim. Biophys. Acta 640:169–178.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., Beckers, F., and Zimmermann, U., 1979, Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study, J. Membr. Biol. 48:181–204.

    Article  PubMed  CAS  Google Scholar 

  • Dimitrov, D. S., and Jain, R. K., 1984, Membrane stability, Biochim. Biophys. Acta 779:437–468.

    Article  PubMed  CAS  Google Scholar 

  • Goel, N. S., and Richter-Dyn, N., 1974, Stochastic Models in Biology, Academic Press, New York.

    Google Scholar 

  • Jordan, P. C., 1982, Electrostatic modeling of ion pores: Energy barriers and electric field profiles, Biophys. J. 39:157–164.

    Article  PubMed  CAS  Google Scholar 

  • Kashchiev, D., 1987, On the stability of membrane, foam and emulsion with respect to rupture by hole nucleation, Colloid Polymer Sci. 265:436–441.

    Article  Google Scholar 

  • Kashchiev, D., and Exerowa, D., 1983, Bilayer lipid membrane permeation and rupture due to hole formation, Biochim. Biophys. Acta 732:133–145.

    Article  PubMed  CAS  Google Scholar 

  • Pastushenko, V. F., and Petrov, A. G., 1984, Electro-mechanical mechanism of pore formation in bilayer lipid membranes, in: Biophysics of Membrane Transport, School Proceedings, Poland, pp. 70-91.

    Google Scholar 

  • Powell, K. T., Derrick, E. G., and Weaver, J. C., 1986, A quantitative theory of reversible electrical breakdown in bilayer membranes, Bioelectrochem. Bioenerg. 15:243–255.

    Article  Google Scholar 

  • Sugar, I. P., 1987, Cooperativity and classification of phase transitions: Application to one-and two-component phospholipid membranes, J. Phys. Chem. 91:95–101.

    Article  CAS  Google Scholar 

  • Sugar, I. P., and Neumann, E., 1984, Stochastic model for electric field-induced membrane pores: Electroporation, Biophys. Chem. 19:211–225.

    Article  PubMed  CAS  Google Scholar 

  • Sugar, I. P., Forster, W., and Neumann, E., 1987, Model of cell electrofusion: Membrane electroporation, pore coalescence and percolation, Biophys, Chem. 26:321–337.

    Article  CAS  Google Scholar 

  • Teissie, J., and Tsong, T. Y., 1981, Electric field induced transient pores in phospholipid bilayer vesicles, Biochemistry 20:1548–1554.

    Article  PubMed  CAS  Google Scholar 

  • Tien, H. T., 1974, Bilayer Lipid Membranes, Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sugar, I.P. (1989). Stochastic Model of Electric Field-Induced Membrane Pores. In: Neumann, E., Sowers, A.E., Jordan, C.A. (eds) Electroporation and Electrofusion in Cell Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2528-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2528-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2530-5

  • Online ISBN: 978-1-4899-2528-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics