Skip to main content

External Electric Field-Induced Transmembrane Potentials in Biological Systems

Features, Effects, and Optical Monitoring

  • Chapter
Electroporation and Electrofusion in Cell Biology
  • 424 Accesses

Abstract

In living systems, a high level of organizational heterogeneity forms the structural basis for a wide variety of functions (energy transduction, ion and metabolite transport, excitability, development) and their regulation. At a fundamental level, practically all events and interactions involved are ultimately electrical in nature, due to the ubiquity of charges and the suitability for processing of electrical signals, as well as to evolutionary reasons. Most phenomena of interest involve biological membranes, shown to be highly specialized molecular assemblies and not mere proteolipid barriers between the inside and outside media. As a consequence, the electrical properties of membranes have been extensively investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, W., and Azzi, J., 1971, The mechanism of delayed light production by photosynthetic organisms and a new effect of electric fields on chloroplasts, Photochem. Photobiol. 14:233–240.

    Article  CAS  Google Scholar 

  • Asami, K., and Irimajiri, A., 1984, Dielectric dispersion of a single spherical bilayer membrane in suspension, Biochim. Biophys. Acta 769:370–376.

    Article  CAS  Google Scholar 

  • Bernhardt, J., and Pauly, H., 1973, On the generation of potential differences across the membranes of ellipsoidal cells in an alternating electrical field, Biophysik 10:89–98.

    Article  PubMed  CAS  Google Scholar 

  • Bertling, W., Hunger-Bertling, K., and Cline, M. J., 1987, Intranuclear uptake and persistence of biologically active DNA after electroporation of mammalian cells, J. Biochem. Biophys. Methods 14:223–232.

    Article  PubMed  CAS  Google Scholar 

  • Boggs, S. S., Gregg, R. G., Borenstein, N., and Smithies, O., 1986, Efficient transformation and frequent single-site, single-copy insertion of DNA can be obtained in mouse erythroleukemia cells transformed by electroporation, Exp. Hematol. 14:988–994.

    PubMed  CAS  Google Scholar 

  • Brewer, G. J., and Thomas, P. D., 1984, Role of gangliosides in adhesion and conductance changes in large spherical model membranes, Biochim. Biophys. Acta 776:279–287.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, G., and Wolfe, J., 1987, Electromechanical stresses produced in plasma membranes of suspended cells by applied electric fields, J. Membrane Biol. 96:129–139.

    Article  CAS  Google Scholar 

  • Chan, C. Y., and Nicholson, C., 1986, Modulation by applied electric fields of Purkinje and stellate cell activity in the isolation turtle cerebellum, J. Physiol. (London) 371:89–114.

    CAS  Google Scholar 

  • Chu, G., Hayakawa, H., and Berg, P., 1987, Electroporation for the efficient transfection of mammalian cells with DNA, Nucleic Acid Res. 15:1311–1326.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, L. B., and Salzberg, B. M., 1978, Optical measurement of membrane potential, Rev. Physiol. Biochem. Pharmacol. 83:35–88.

    PubMed  CAS  Google Scholar 

  • Cole, K. S., 1968, Membranes, Ions and Impulses, University of California Press, Berkeley.

    Google Scholar 

  • DeGrooth, B. G., Van Gorkom, H. J., and Meiburg, R. F., 1980, Electrochromic absorbance changes in spinach chloroplasts induced by an external electrical field, Biochim. Biophys. Acta 589:299–314.

    Article  CAS  Google Scholar 

  • DeWeer, P., and Salzberg, B. M. (eds.), 1986, Optical Methods in Cell Physiology, Wiley-Interscience, New York.

    Google Scholar 

  • Ehrenberg, B., Farkas, D. L., Fluhler, E. N., Lojewska, Z., and Loew, L. M., 1987, Membrane potential induced by external electric field pulses can be followed with a potentiometric dye, Biophys. J. 51:833–837.

    Article  PubMed  CAS  Google Scholar 

  • Ellenson, J. L., and Sauer, K., 1976, The electrophotoluminescence of chloroplasts, Photochem. Photobiol. 23:113–123.

    Article  PubMed  CAS  Google Scholar 

  • Farkas, D. L., 1983, External electric field induced phenomena in the photosynthetic membrane: Elec-trophotoluminescence and phosphorylation, Ph.D. thesis, The Weizmann Institute of Science, Rehovot, Israel.

    Google Scholar 

  • Farkas, D. L., Korenstein, R., and Malkin, S., 1980, Electroselection in the photosynthetic membrane: Polarized luminescence induced by an external electric field, FEBS Lett. 120:236–242.

    Article  CAS  Google Scholar 

  • Farkas, D. L., Neeman, M., and Malkin, S., 1981a, Polarization of delayed luminescence in magneto-oriented chloroplasts, FEBS Lett. 134:221–224.

    Article  CAS  Google Scholar 

  • Farkas, D. L., Korenstein, R., and Malkin, S., 1981b, External electric field induced delayed luminescence in the photosynthetic membrane, in: Photosynthesis, Volume I (G. Akoyunoglou, ed.), Balaban International Science Services, Philadelphia, pp. 627–636.

    Google Scholar 

  • Farkas, D. L., Korenstein, R., and Malkin, S., 1982, Ionophore-mediated ion transfer in a biological membrane: A study by electrophotoluminescence, in: Transport in Biomembranes: Model Systems and Reconstitution (R. Antolini, A. Gliozzi, and A. Gorio, eds.), Raven Press, New York, pp. 215–226.

    Google Scholar 

  • Farkas, D. L., Korenstein, R., and Malkin, S., 1983, Electrophotoluminescence in the photosynthetic membrane: A novel approach to the characterization of ionophore action in a biological system, in: Physical Chemistry of Transmembrane Ion Motions (G. Spach, ed.), Elsevier, Amsterdam, pp. 307–317.

    Google Scholar 

  • Farkas, D. L., Korenstein, R., and Malkin, S., 1984a, Electrophotoluminescence and the properties of the photosynthetic membrane. I. Initial kinetics and the charging capacitance of the membrane, Biophys. J. 45:363–373.

    Article  PubMed  CAS  Google Scholar 

  • Farkas, D. L., Malkin, S., and Korenstem, R., 1984b, Electrophotoluminescence and the electrical properties of the photosynthetic membrane. II. Electric field-induced electrical breakdown of the photosynthetic membrane and its recovery, Biochim. Biophys. Acta 767:507–514.

    Article  CAS  Google Scholar 

  • Fluhler, E., Burnham, V. G., and Loew, L. M., 1985, Spectra, membrane binding and potentiometric responses of new charge shift probes, Biochemistry 24:5749–5755.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D., 1988, Electromobile surface charge alters membrane potential changes induced by applied electric fields, Biophys. J. 54:879–884.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D., Loew, L. M., and Webb, W. W., 1986, Optical imaging of cell membrane potential changes induced by applied electric fields, Biophys. J. 50:339–348.

    Article  PubMed  CAS  Google Scholar 

  • Herzog, R., Muller-Wellensiek, A., and Voelter, W., 1986, Usefulness of Ficoll in electric field mediated cell fusion, Life Sci. 39:2279–2288.

    Article  PubMed  CAS  Google Scholar 

  • Kagawa, Y., and Hamamoto, T., 1986, ATP formation in mitochondria, submitochondrial particles, and F0F1 liposomes driven by electric pulses, Methods Enzymol. 126:640–643.

    Article  PubMed  CAS  Google Scholar 

  • Kakitani, T., Honig, B., and Crofts, A. R., 1982, Theoretical studies of the electrochromic response of carotenoids in photosynthetic membranes, Biophys. J. 39:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Korenstein, R., Farkas, D. L., and Malkin, S., 1984, Reversible electrical breakdown of swollen thylakoid membrane vesicles—A study of electrophotoluminescer Bioelectrochem. Bioenerg. 13:191–197.

    Article  CAS  Google Scholar 

  • Lauger, P., Benz, R., Stark, G., Bamberg, E., Jordan, P. C., Fahr, A., and Brock, W., 1981, Relaxation studies of ion transport systems in lipid bilayer membranes, Q. Rev. Biophys. 14:513–598.

    Article  PubMed  CAS  Google Scholar 

  • Lill, H., Althoff, G., and Junge, S., 1987, Analysis of ionic channels by a flash spectrophotometric technique applicable to thylakoid membranes: CF0, the proton channel of the chloroplast ATP synthase, and, for comparison, gramicidin, J. Membr. Biol. 98:69–78.

    Article  CAS  Google Scholar 

  • Loew, L. M., and Simpson, L. L., 1981, Charge-shift probes of membrane potential—A probable elec-trochromic mechanism for p-aminostyrylpyridinium probes on a hemispherical lipid bilayer, Biophys. J. 34:353–365.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, S., and Eisenberg, M., 1975, Antibiotics and membrane biology, Annu. Rev. Biophys. Bioeng. 4:335–366.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, J. C., 1873, A Treatise on Electricity and Magnetism, Volume I, Clarendon Press, Oxford, pp. 362–366.

    Google Scholar 

  • Nea, L. J., Bates, G. W., and Gilmer, P. J., 1987, Facilitation of electrofusion of plant protoplasts by membrane-active agents, Biochim. Biophys. Acta 897:293–301.

    Article  CAS  Google Scholar 

  • Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H., 1982, Gene transfer into mouse lyoma cells by electroporation in high electric fields, EMBO J. 1:841–845.

    PubMed  CAS  Google Scholar 

  • Ohno-Shosaku, T., and Okada, Y., 1984, Facilitation of electrofusion of mouse lymphoma cells by the proteolytic action of proteases, Biochim. Biophys. Res. Commun. 120:138–143.

    Article  CAS  Google Scholar 

  • Pagano, R., and Thompson, T. E., 1967, Spherical lipid bilayer membranes, Biochim. Biophys. Acta 144:666–669.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, H. A., 1978, Dielectrophoresis, Cambridge University Press, London.

    Google Scholar 

  • Poo, M.-m., 1981, In situ electrophoresis of membrane components, Annu. Rev. Biophys. Bioeng. 10:245–276.

    Article  PubMed  CAS  Google Scholar 

  • Schlodder, E., and Witt, H. T., 1980, Electrochromic absorption changes of a chloroplast suspension induced by an external electric field, FEBS Lett. 112:105–112.

    Article  CAS  Google Scholar 

  • Schmid, R., and Junge, W., 1975, Current-voltage studies on the thylakoid membranes in the presence of ionophores, Biochim. Biophys. Acta 394:76–92.

    Article  PubMed  CAS  Google Scholar 

  • Shanzer, A., Samuel, D., and Korenstein, R., 1983, Lipophilic lithium ion carriers, J. Am. Chem. Soc. 105:3815–3818.

    Article  CAS  Google Scholar 

  • Sowers, A. E., 1985, Movement of a fluorescent lipid label from a labeled erythrocyte membrane to an unlabeled erythrocyte membrane following electric field-induced fusion, Biophys. J. 47:519–525.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E., and Lieber, M. R., 1986, Electropore diameters, numbers, and locations in individual erythrocyte ghosts, FEBS Lett. 205:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Stopper, H., Jones, H., and Zimmermann, U., 1987, Large scale transfection of mouse L-cells by electroper-meabilization, Biochim. Biophys. Acta 900:38–44.

    Article  PubMed  CAS  Google Scholar 

  • Symons, M., Korenstein, R., and Malkin, S., 1985, External electric field effects on photosynthetic vesicles: The relationships of the rapid and slow phases of electrophotoluminescence in hypotonically swollen chloroplasts to PSI and PSII activity, Biochim. Biophys. Acta 806:305–310.

    Article  CAS  Google Scholar 

  • Symons, M., Malkin, S., and Farkas, D. L., 1987, Photochemical properties of PSI studied by electrical field induced luminescence, Biochim. Biophys. Acta 894:578–582.

    Article  CAS  Google Scholar 

  • Tsong, T. Y., 1983, Voltage modulation of membrane permeability and energy utilization in cells, Biosci. Rep. 3:487–505.

    Article  PubMed  CAS  Google Scholar 

  • Vinkler, C., Korenstein, R., and Farkas, D. L., 1982, External electric field driven ATP synthesis in chloroplast: A slow, ATP-synthase dependent reaction, FEBS Lett. 145:235–240.

    Article  CAS  Google Scholar 

  • Vinkler, C., Korenstein, R., and Farkas, D. L., 1983, External electric field driven ADP phosphorylation (EFP) in thylakoid membranes, in: Biological Structures and Coupled Flows (A. Oplatka and M. Balaban, eds.), Academic Press, New York and Balaban International Science Services, Philadelphia, pp. 113–121.

    Google Scholar 

  • Witt, H. T., 1979, Energy conversion in the functional membrane of photosynthesis—Analysis by light pulse and electric pulse methods: The central role of the electric field, Biochim. Biophys. Acta 505:355–427.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., Scheurich, P., Pilwat, G., and Benz, R., 1981, Cells with manipulated functions: New perspectives for cell biology, medicine and technology, Angew. Chem. Int. Ed. Engl. 20:325–344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farkas, D.L. (1989). External Electric Field-Induced Transmembrane Potentials in Biological Systems. In: Neumann, E., Sowers, A.E., Jordan, C.A. (eds) Electroporation and Electrofusion in Cell Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2528-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2528-2_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2530-5

  • Online ISBN: 978-1-4899-2528-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics