Skip to main content

Molecular Genetic Applications of Electroporation

  • Chapter
Electroporation and Electrofusion in Cell Biology

Abstract

Both academic and industrial applications of molecular biology depend on being able to efficiently express cloned genes in various eukaryotic cells. The traditional method of gene transfer, by uptake of calcium phosphate/DNA coprecipitates (Graham and Van der Eb, 1973), works well with fibroblasts but has proved difficult to apply to other differentiated mammalian cell types such as lymphocytes or neuronal cells, and is completely unsuited to plant cells or parasites. The solution to this problem has been provided by a completely new approach—electroporation. In studying the effect of high-voltage electric discharges on biological membranes, it was discovered that such shocks could induce cells to fuse via their plasma membranes, apparently by creating holes or pores in the cell membrane (Zimmermann et al., 1976; Senda et al., 1979; Scheurich et al., 1980; Neumann et al., 1980; for review, see Zimmermann and Vienken, 1982). Neumann and his colleagues (Neumann et al., 1982; Wong and Neumann, 1982) then found that mouse fibroblasts (L cells) take up and express exogenous DNA when subjected to electric shock. However, because L cells are easily made to take up DNA by traditional methods, it was not clear that the procedure could be applied to any other type of cell. We extended and modified electroporation (Potter et al., 1984) to allow the introduction of exogenous DNA into a broad spectrum of cell types, including neuronal cells, endocrine cells, primary animal cells, hepatoma cells, hematopoietic stem cells, and plant protoplasts (Fromm et al., 1985; Igarashi et al., 1986; Potter and Montminy, 1986; Montminy et al., 1986; Ou-Lee et al., 1986; Sureau et al., 1986; Toneguzzo et al., 1986; Potter, 1987). Electroporation yields a high frequency of permanent transfectants, has a high efficiency of transient gene expression, and is substantially easier to carry out than alternative techniques. Thus, for various reasons electroporation is becoming increasingly popular. Indeed, in the last few years, electroporation has moved out of a few developmental laboratories to become the method of choice for gene transfer in many situations (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chu, G., Hayakawa, H., and Berg, P., 1987, Electroporation for the efficient transfection of mammalian cells with DNA, Nucleic Acids Res. 15:1311–1326.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M., Taylor, L. P., and Walbot, V., 1985, Expression of genes transferred into monocot and dicot plant cells by electroporation, Proc. Natl. Acad. Sci. USA 82:5824–5828.

    Article  PubMed  CAS  Google Scholar 

  • Gorman, C. M., Moffat, L. F., and Howard, B. H., 1982, Recombinant genomes which express chloramphenicol acetyl transferase in mammalian cells, Mol. Cell. Biol. 2:1044–1051.

    PubMed  CAS  Google Scholar 

  • Graham, F.L., and Van der Eb, A., 1973, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology 52:456–467.

    Article  PubMed  CAS  Google Scholar 

  • Hieter, P. A., Max, E. E., Seidman, J. G., Maizel, J. V., Jr., and Leder, P., 1980, Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments, Cell 22:197–207.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, T., Okazaki, T., Potter, H., Gaz, R., and Kronenberg, H. M., 1986, Cell-specific expression of the human parathyroid hormone gene in rat pituitary cells, Mol. Cell. Biol. 6:1830–1833.

    PubMed  CAS  Google Scholar 

  • Jastreboff, M. M., Ito, E., Bertino, J.R., and Narayanan, R., 1987, Use of electroporation for high-molecular-weight DNA-mediated gene transfer, Exp. Cell Res. 171:513–517.

    Article  PubMed  CAS  Google Scholar 

  • Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G., and Goodman, H., 1986, Identification of a cyclic-AMP responsive element within the rat somatostatin gene, Proc. Natl. Acad. Sci. USA 83:6682–6686.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, E., Gerisch, G., and Opatz, K., 1980, Cell fusion induced by high electric impulses applied to Dictyostelium, Naturwissenschaften 67:414–415.

    Article  Google Scholar 

  • Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H., 1982, Gene transfer into mouse lyoma cells by electroporation in high electric fields, EMBO J. 1:841–845.

    PubMed  CAS  Google Scholar 

  • Ou-Lee, T. M., Turgeon, R., and Wu, R., 1986, Expression of a foreign gene linked to either a plant virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat, and sorghum, Proc. Natl. Acad. Sci. USA 83:6815–6819.

    Article  PubMed  CAS  Google Scholar 

  • Potter, H., 1987, Electroporation: A general method of gene transfer in: Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, pp. 705-707.

    Google Scholar 

  • Potter, H., and Montminy, M., 1986, Introduction of cloned genes into PC 12 pheochromocytoma cells by electroporation, in: Discussions in Neurosciences, Volume III, No. I (A. Bignami, L. Bolis, and D. C. Gadjusek, eds.), FESN, Geneva, pp. 138–143.

    Google Scholar 

  • Potter, H., Weir, L., and Leder, P., 1984, Enhancer-dependent expression of human k immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation, Proc. Natl. Acad. Sci. USA 81:7161–7165.

    Article  PubMed  CAS  Google Scholar 

  • Scheurich, P., Zimmerman, U., Mischel, M., and Lamprecht, I., 1980, Membrane fusion and deformation of red blood cells by electric fields, Z. Naturforsch. 35c: 1081–1085.

    Google Scholar 

  • Senda, M., Takeda, J., Abe, S., and Nakamura, T., 1979, Cell fusion by electrical stimulation, Plant Cell Physiol. 20:144–1443.

    Google Scholar 

  • Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., and Kucherlapati, R. S., 1985, Insertion of DNA sequences into the human chromosome β-globin locus by homologous recombination, Nature 317:230–234.

    Article  PubMed  CAS  Google Scholar 

  • Sugden, B., Marsh, K., and Yates, J., 1985, A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus, Mol. Cell Biol. 5:410–413.

    PubMed  CAS  Google Scholar 

  • Sureau, C., Romet-Lemonne, J.-L., Mullins, J. I., and Essex, M., 1986, Production of hepatitis-B virus by a differentiated human hepatoma cell line after transfection with a cloned circular HBV DNA, Cell 47:37–47.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, K. R., and Capecchi, M. R., 1987, Site-directed mutagenesis by gene targeting in mouse embryoderived stem cells, Cell 51:503–512.

    Article  PubMed  CAS  Google Scholar 

  • Toneguzzo, F., and Keating, A., 1986, Stable expression of selectable genes introduced into human hematopoietic stem cells by electric field-mediated DNA transfer, Proc. Natl. Acad. Sci. USA 83:3496–3499.

    Article  PubMed  CAS  Google Scholar 

  • Toneguzzo, F., and Keating, A., 1987, Mechanism of transfer and integration of genes introduced into hematopoietic cells by electroporation, in: Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, pp. 715-716.

    Google Scholar 

  • Toneguzzo, F., Hayday, A. C., and Keating, A., 1986, Electric field mediated DNA transfer: Transient and stable gene expression in human and mouse lymphoid cells, Mol. Cell. Biol. 6:703–706.

    PubMed  CAS  Google Scholar 

  • Toneguzzo, F., Keating, A., Lilly, S., and McDonald, K., 1988, Electric field-mediated gene transfer: Charac-terization of DNA transfer and patterns of integration in lymphoid cells, Nucleic Acids Res. 16:5515–5532.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D. A., Lemischka, I. R., Nathan, D. G., and Mulligan, R. C., 1984, Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse, Nature 310:476–480.

    Article  PubMed  CAS  Google Scholar 

  • Wong, T. K., and Neumann, E., 1982, Electric field mediated gene transfer, Biochem. Biophys. Res. Commun. 107:584–587.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., and Vienken, J., 1982, Electric field-induced cell-to-cell fusion, J. Membr. Biol. 67:165–182.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., Riemann, F., and Pilwat, G., 1976, Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielectric breakdown, Biochim. Biophys. Acta 436:460–474.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potter, H. (1989). Molecular Genetic Applications of Electroporation. In: Neumann, E., Sowers, A.E., Jordan, C.A. (eds) Electroporation and Electrofusion in Cell Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2528-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2528-2_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2530-5

  • Online ISBN: 978-1-4899-2528-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics