Skip to main content

Generation of Human Hybridomas by Electrofusion

  • Chapter
  • 423 Accesses

Abstract

Electrofusion is a technique which uses the application of precise, transient electric fields to induce somatic cell hybridization (Zimmermann, 1982; Knight and Scrutton, 1986). This recent methodology is effective for obtaining viable hybrids of plant (Bates et al., 1983; Saunders, 1985), yeast (Schnettler et al., 1984), and mammalian (Scheurich and Zimmermann, 1981; Tiessié et al., 1982; Vienken et al., 1983; Finaz et al., 1984; Lo et al., 1984; Neumann, 1984; Podesta et al., 1984; Karsten et al., 1985; Pratt et al., 1987) origin, including interkingdom hybridization (Cocking, 1984). Hybridomas of both mouse (Berg et al., 1983; Shimizu and Watarobe, 1985; Wojchowski and Sytkowski, 1986) and human (Bischoff et al., 1982; Shimizu and Watarobe, 1985; Pratt et al., 1987) derivation have been produced at relatively high efficiency, but Ig secretion has been limited (Vienken and Zimmermann, 1985; Hofmann and Evans, 1986).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, P. G., Knost, J. A., Clark, G., Wilburn, S., Oldham, R. K., and Foon, K. A., 1983, Determination of the optimal human cell lines for development of human hybridomas, J. Immunol 131:1201–1205.

    PubMed  CAS  Google Scholar 

  • Bates, G. W., Gaynor, J. J., and Shekhawat, H. S., 1983, Fusion of plant protoplasts by electric fields, Plant Physiol. 72:1110–1113.

    Article  PubMed  CAS  Google Scholar 

  • Berg, D., Schumann, I., and Stelzner, A., 1983, Electrically stimulated fusion between myeloma cells and spleen cells, Stud. Biophys. 94:101–102.

    Google Scholar 

  • Bischoff, R., Eisert, R. M., Schnedek, I., Vienken, J., and Zimmermann, U., 1982, Human hybridoma cells produced by electrofusion, FEBS Lett. 147:64–68.

    Article  PubMed  CAS  Google Scholar 

  • Boyum, A., 1968, Separation of leucocytes for blood and bone marrow, Scand. J. Clin. Lab. Invest. 21(Suppl. 97):77–89.

    CAS  Google Scholar 

  • Cocking, E. C., 1984, Plant-animal cell fusion, Ciba Found. Symp. 103:119–128.

    PubMed  CAS  Google Scholar 

  • Dorfman, H. A., 1985, The optimal technological approach to the development of human hybridomas, J. Biol. Respir. Mod. 4:213–239.

    CAS  Google Scholar 

  • Engleman, E. G., Foung, S., Larrick, J., and Raubitschek, A. (eds.), 1985, Human Hybridomas and Monoclonal Antibodies, Plenum Press, New York.

    Google Scholar 

  • Finaz, C., Lefevre, A., and Teissié, J., 1984, A new highly efficient technique for generating somatic cell hybrids, Exp. Cell Res. 150:477–482.

    Article  PubMed  CAS  Google Scholar 

  • Gaffar, S. A., and Glassy, M. C., 1988, Applications of mouse and human monoclonal antibodies in non-isotopic enzyme immunoassays, in: Reviews on Immunoassay Technology, Volume 1 (S. B. Pal, ed.), Macmillan Press, Basingstoke, U.K., pp. 123–146.

    Google Scholar 

  • Glassy, M. C., 1987, Immortalization of human lymphocytes from a tumor involved lymph node, Cancer Res. 47:5181–5188.

    PubMed  CAS  Google Scholar 

  • Glassy, M. C., and Cleveland, P. H., 1986, Use of mouse and human monoclonal antibodies in enzyme immunofiltration, Methods Enzymol. 121:525–541.

    Article  PubMed  CAS  Google Scholar 

  • Glassy, M. C., and Furlong, C. E., 1981, Neutral amino acid transport during the cell cycle in human lymphocytes, J. Cell. Physiol. 107:69–74.

    Article  PubMed  CAS  Google Scholar 

  • Glassy, M. C., and Hofmann, G., 1985, Optimization of electrocell fusion parameters in generating human-human hybrids with UC 729-6, Hybridoma 4:61.

    Google Scholar 

  • Glassy, M. C., and Surh, C., 1985, Immunodetection of cell-bound antigens using both mouse and human monoclonal antibodies, J. Immunol. Methods 81:115–122.

    Article  PubMed  CAS  Google Scholar 

  • Glassy, M. C., Handley, H. H., Hagiwara, H., and Royston, I., 1983a, UC 729-6, a human lymphoblastoid B cell line useful for generating antibody secreting human-human hybridomas, Proc. Natl. Acad. Sci. USA 80:6327–6331.

    Article  PubMed  CAS  Google Scholar 

  • Glassy, M. C., Handley, H. H., Cleveland, P. H., and Royston, I., 1983b, An enzyme immunofiltration assay useful for detecting human monoclonal antibody, J. Immunol. Methods 58:119–126.

    Article  PubMed  CAS  Google Scholar 

  • Glassy, M. C., Handley, H., and Royston, I., 1985, Design and production of human monoclonal antibodies to human cancers, in: Human Hybridomas and Monoclonal Antibodies (E. G. Engleman, S. Foung, J. Larrick, and A. Raubitschek, eds.), Plenum Press, New York, pp. 211–225.

    Chapter  Google Scholar 

  • Glassy, M. C., Gaffar, S. A., Peters, R. E., and Royston, I., 1987a, Immortalization of the human immune response to human cancers, in: Human Hybridomas: Diagnostic and Therapeutic Applications (A. J. Strelkauskas, ed.), Dekker, New York, pp. 205–225.

    Google Scholar 

  • Glassy, M. C., Handley, H. H., Surh, C., and Royston, I., 1987b, Genetically stable human hybridomas secreting tumor reactive human monoclonal IgM, Cancer Invest. 5:449–457.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, G. A., and Evans, G. A., 1986, Physical and biological aspects of cellular electromanipulation, IEEE Eng. Med. Biol. 5:6–25.

    Article  Google Scholar 

  • Karsten, U., Papsdorf, G., Roloff, G., Stolley, P., Abel, H., Walther, I., and Weiss, H., 1985, Monoclonal anti-cytokeratin antibody from a hybridoma clone generated by electrofusion, Eur. J. Cancer Clin. Oncol. 21:733–740.

    Article  PubMed  CAS  Google Scholar 

  • Knight, D. E., and Baker, P. F., 1982, Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields, J. Membr. Biol. 68:107–140.

    Article  PubMed  CAS  Google Scholar 

  • Knight, D. E., and Scrutton, M. C., 1986, Gaining access to the cytosol: The technique and some applications of electropermeabilization, Biochem. J. 234:497–506.

    PubMed  CAS  Google Scholar 

  • Littlefield, J. W., 1964, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants, Science 145:709–711.

    Article  PubMed  CAS  Google Scholar 

  • Lo, M. M. S., Tsong, T. Y., Conrad, M. K., Strittmatter, S. M., Hester, L. D., and Snyder, S. H., 1984, Monoclonal antibody production by receptor-mediated electrically induced cell fusion, Nature 310:792–794.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, E., 1984, Electric gene transfer into culture cells, Bioelectrochem. Bioenerg. 13:219–223.

    Article  CAS  Google Scholar 

  • Olsson, L., 1985, Human monoclonal antibodies in experimental cancer research, J. Natl. Cancer Inst. 75:397–403.

    PubMed  CAS  Google Scholar 

  • Podesta, E. J., Solano, A. R., Molina Y Vedia, L., Paladini, A., Jr., and Sanchez, M. L., 1984, Production of steroid hormone and cyclic AMP in hybrids of adrenal and Leydig cells generated by electrofusion, Eur. J. Biochem. 145:329–332.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, H. A., 1978, Dielectrophoresis, Cambridge University Press, London.

    Google Scholar 

  • Pratt, M., Mikhalev, A., and Glassy, M. C., 1987, The generation of Ig-secreting UC 729-6 derived human hybridomas by electrofusion, Hybridoma 6:469–477.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, S., Glassy, M. C., Ferrone, S., and Jones, O. W., 1980, Cell surface HLA antigen density in the cell cycle of a human B lymphoid cell line, Proc. Natl. Acad Sci. USA 77:7297–7301.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, J. A., 1985, Electrically induced fusion of cells and protoplasts, Front. Membr. Res. Agr. 9:147–156.

    Google Scholar 

  • Scheurich, P., and Zimmermann, U., 1981, Giant human erythrocytes by electric-field induced cell to cell fusion, Naturwissenschaften 68:45–46.

    Article  PubMed  CAS  Google Scholar 

  • Schnettler, R., Zimmermann, U., and Emeis, C. C., 1984, Large-scale production of yeast saccharomycescerevisiae hybrids by electrofusion, FEMS MicrobioL Lett. 24:81–85.

    Article  Google Scholar 

  • Shawler, D. L., Wormsley, S. B., Dillman, R. O., Frisman, D., Baird, S. M., Glassy, M. C., and Royston, I., 1985, Diffuse, poorly differentiated lymphoma with peripheral blood and bone marrow involvement: Phenotypic characterization and serotherapy with monoclonal antibodies, Int. J. Immunopharmacol. 7:423–432.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, H., and Watarobe, T., 1985, Application of electrofusion on the gene transfer and hybridoma production, Med. Immunol. 2:105–110.

    Google Scholar 

  • Sowers, A. E., and Lieber, M. R., 1986, Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts, FEBS Lett. 205:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Sugar, I. P., and Neumann, E., 1984, Stochastic model for electric field induced membrane pores electroporation, Biophys. Chem. 19:211–225.

    Article  PubMed  CAS  Google Scholar 

  • Teissié. J., and Tsong, T. Y., 1981, Electric field induced transient pores in phospholipid bilayer vesicles, Biochemistry 20:1548–1554.

    Article  PubMed  Google Scholar 

  • Teissié, J., Knutson, V. P., Tsong, T. Y., and Lane, M. D., 1982, Electric pulse induced fusion of 3T3 cells in monolayer culture, Science 216:537–538.

    Article  PubMed  Google Scholar 

  • Thielmans, K., Maloney, D. G., Meeker, T., Fujimoto, J., Doss, C., Warnke, R. A., Bindle, J., Gralow, J., Miller, R. A., and Levy, R., 1984, Strategies for production of monoclonal anti-idiotype antibodies against human B cell lymphomas, J. Immunol. 133:495–502.

    Google Scholar 

  • Vienken, J., and Zimmermann, U., 1985, An improved electrofusion technique for production of mouse hybridoma cells, FEBS Lett. 182:278–280.

    Article  PubMed  CAS  Google Scholar 

  • Veinken, J., Zimmermann, U., Fouchard, M., and Zagury, D., 1983, Electrofusion of myeloma cells on the single cell level: Fusion under sterile conditions without proteolytic enzyme treatment, FEBS Lett. 163:54–56.

    Article  Google Scholar 

  • Wojchowski, D. M., and Sytkowski, A. J., 1986, Hybridoma production by simplified avidin-mediated electrofusion, J. Immunol. Methods 90:173–177.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., 1982, Electric field-mediated fusion and related electric phenomena, Biochim. Biophys. Acta 694:227–277.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Glassy, M.C., Pratt, M. (1989). Generation of Human Hybridomas by Electrofusion. In: Neumann, E., Sowers, A.E., Jordan, C.A. (eds) Electroporation and Electrofusion in Cell Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2528-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2528-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2530-5

  • Online ISBN: 978-1-4899-2528-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics